Sexual Differentiation of Kiss1 Gene Expression in the Brain of the Rat

Author:

Kauffman Alexander S.,Gottsch Michelle L.,Roa Juan,Byquist Alisa C.,Crown Angelena,Clifton Don K.,Hoffman Gloria E.,Steiner Robert A.,Tena-Sempere Manuel

Abstract

The Kiss1 gene codes for kisspeptins, which have been implicated in the neuroendocrine regulation of reproduction. In the brain, Kiss1 mRNA-expressing neurons are located in the arcuate (ARC) and anteroventral periventricular (AVPV) nuclei. Kiss1 neurons in the AVPV appear to play a role in generating the preovulatory GnRH/LH surge, which occurs only in females and is organized perinatally by gonadal steroids. Because Kiss1 is involved in the sexually dimorphic GnRH/LH surge, we hypothesized that Kiss1 expression is sexually differentiated, with females having more Kiss1 neurons than either males or neonatally androgenized females. To test this, male and female rats were neonatally treated with androgen or vehicle; then, as adults, they were left intact or gonadectomized and implanted with capsules containing sex steroids or nothing. Kiss1 mRNA levels in the AVPV and ARC were determined by in situ hybridization. Normal females expressed significantly more Kiss1 mRNA in the AVPV than normal males, even under identical adult hormonal conditions. This Kiss1 sex difference was organized perinatally, as demonstrated by the observation that neonatally androgenized females displayed a male-like pattern of adulthood Kiss1 expression in the AVPV. In contrast, there was neither a sex difference nor an influence of neonatal treatment on Kiss1 expression in the ARC. Using double-labeling techniques, we determined that the sexually differentiated Kiss1 neurons in the AVPV are distinct from the sexually differentiated population of tyrosine hydroxylase (dopaminergic) neurons in this region. Our findings suggest that sex differences in kisspeptin signaling from the AVPV subserve the cellular mechanisms controlling the sexually differentiated GnRH/LH surge.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3