Affiliation:
1. Division of Endocrinology and Metabolism, Department of Internal Medicine (K.K.S, R.J.A.), Dallas, Texas 75390
2. the Department of Pharmacology and the Howard Hughes Medical Institute (Z.W., D.L.M., C.L.C., D.J.M.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
Abstract
AbstractThe nuclear hormone receptor DAF-12 from Caenorhabditis elegans is activated by dafachronic acids, which derive from sterols upon oxidation by DAF-9, a cytochrome P450. DAF-12 activation is a critical checkpoint in C. elegans for acquisition of reproductive competence and for entry into adulthood rather than dauer diapause. Previous studies implicated the (25S)-Δ7-dafachronic acid isomer as the most potent compound, but the (25S)-Δ4-isomer was also identified as an activator of DAF-12. To explore the tolerance of DAF-12 for structural variations in the ligand and to enable further studies requiring large amounts of ligands for DAF-12 and homologs in other nematodes, we synthesized (25R)- and (25S)-isomers of five dafachronic acids differing in A/B-ring configurations. Both the (25S)- and (25R)-Δ7-dafachronic acids are potent transcriptional activators in a Gal4-transactivation assay using HEK-293 cells, with EC50 values of 23 and 33 nm, respectively, as are (25S)- and (25R)-Δ4-dafachronic acids, with EC50 values of 23 and 66 nm, respectively. The (25S)- and (25R)-Δ5-isomers were much less potent, with EC50 values approaching 1000 nm, and saturated 5α- and 5β-dafachronic acids showed mostly intermediate potencies. Rescue assays using daf- 9-null mutants confirmed the results from transactivation experiments, but this in vivo assay accentuated the greater potencies of the (25S)-epimers, particularly for the (25S)-Δ7-isomer. We conclude that DAF-12 accommodates a large range of structural variation in ligand geometry, but (25S)-Δ7-dafachronic acid is the most potent and probably biologically relevant isomer. Potency derives more from the A/B-ring configuration than from the stereochemistry at C-25.
Subject
Endocrinology,Molecular Biology,General Medicine
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献