Loss of Betaglycan Contributes to the Malignant Properties of Human Granulosa Tumor Cells

Author:

Bilandzic Maree1,Chu Simon1,Farnworth Paul G.1,Harrison Craig1,Nicholls Peter1,Wang Yao1,Escalona Ruth M.1,Fuller Peter J.1,Findlay Jock K.1,Stenvers Kaye L.1

Affiliation:

1. Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168, Australia

Abstract

Abstract Betaglycan is a type III TGFβ receptor that modulates cellular sensitivity to inhibins and TGFβ. Previous studies have suggested that betaglycan acts as a tumor suppressor in certain human epithelial cancers. However, the roles of betaglycan in ovarian granulosa cell tumors (GCTs) are poorly understood. The objective of this study was to determine whether human GCTs exhibit betaglycan expression and, if so, what impact this receptor has on tumor biology. Real-time PCR was used to quantify betaglycan transcripts in human GCTs (n = 17) and normal premenopausal ovaries (n = 11). This analysis established that GCTs exhibited a significant 2-fold lower mean betaglycan mRNA level as compared with the normal ovary (P < 0.05). Similarly, two human GCT cell lines, KGN and COV434, exhibited low betaglycan expression and poor responsiveness to TGFβ and inhibin A in luciferase reporter assays, which was restored by stable transfection of wild-type betaglycan. Betaglycan significantly increased the adhesion of COV434 (P < 0.05) and KGN (P < 0.0001) cells, decreased cellular invasion through Matrigel, and inhibited wound healing. Expression of mutant forms of betaglycan that are defective in TGFβ and/or inhibin binding in each GCT cell line revealed that the inhibitory effects of betaglycan on wound healing were most strongly linked to the inhibin-binding region of betaglycan. Furthermore, knockdown of INHA mRNA expression abrogated the betaglycan-mediated inhibition of wound healing and invasion, whereas both INHA silencing and TGFβ neutralization abolished the betaglycan-mediated increase in adhesion to substrate. These data suggest that loss of betaglycan contributes to the pathogenesis of GCTs.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference50 articles.

1. Management of ovarian stromal cell tumors.;Colombo;J Clin Oncol,2007

2. Signalling pathways in the molecular pathogenesis of ovarian granulosa cell tumours.;Fuller;Trends Endocrinol Metab,2004

3. Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes.;Amsterdam;Endocr Rev,1997

4. Analysis of WT1 in granulosa cell and other sex cord-stromal tumors.;Coppes;Cancer Res,1993

5. Mitotic count, nuclear atypia, and immunohistochemical determination of Ki-67, c-myc, p21-ras, c-erbB2, and p53 expression in granulosa cell tumors of the ovary: mitotic count and Ki-67 are indicators of poor prognosis.;King;Gynecol Oncol,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3