Gonadotropin-Releasing Hormone and Protein Kinase C Signaling to ERK: Spatiotemporal Regulation of ERK by Docking Domains and Dual-Specificity Phosphatases

Author:

Armstrong Stephen Paul1,Caunt Christopher James1,McArdle Craig Alexander1

Affiliation:

1. Laboratories for Integrated Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Bristol BS1 3NY, United Kingdom

Abstract

AbstractActivated ERK translocates to the nucleus to regulate transcription. Spatiotemporal aspects of this response dictate biological consequences and are influenced by dual-specificity phosphatases (DUSPs) that can scaffold and dephosphorylate ERK. In HeLa cells, GnRH causes transient and protein kinase C (PKC)-dependent ERK activation, but termination mechanisms are unknown. We now explore DUSP roles using short inhibitory RNA to knock down endogenous ERK, adenoviruses to express GnRH receptors and add-back ERK2-GFP, and automated microscopy to monitor ERK location and activation. GnRH caused rapid and transient increases in dual phosphorylated ERK2 (ppERK2) and nuclear to cytoplasmic ERK2-green fluorescent protein (GFP) ratio, whereas responses to a PKC-activating phorbol ester were more sustained. In cells expressing D319N ERK2-GFP (D319N mutation impairs docking-domain-dependent binding to DUSPs), GnRH caused more sustained increases in ppERK2 and nuclear to cytoplasmic ERK2-GFP ratio and also had more pronounced effects on Egr-1 luciferase (a transcriptional reporter for ERK activation). Cycloheximide caused more sustained effects of GnRH and phorbol ester on ppERK, suggesting termination by nuclear-inducible DUSPs. GnRH also increased expression of nuclear-inducible DUSP1 and -4, but their knockdown did not alter GnRH-mediated ERK signaling. Screening a short inhibitory RNA library targeting 16 DUSPs (nuclear-inducible DUSPs, cytoplasmic ERK MAPK phosphatases, c-Jun N-terminal kinase/p38 MAPK phosphatases, and atypical DUSPs) revealed GnRH effects to be influenced by DUSPs 5, 9, 10, 16, and 3 (i.e. by each DUSP class). Thus, GnRH-mediated ERK responses (like PKC-mediated ERK responses) are dependent on protein neosynthesis and docking-domain-dependent binding, but for GnRH activation (unlike PKC activation), this does not reflect dependence on nuclear-inducible DUSPs. Termination of these GnRH effects is apparently dependent upon a preexisting rapid turnover protein.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference48 articles.

1. Gonadotropin-releasing hormone and its analogs.;Conn;Annu Rev Med,1994

2. Gonadotropin-releasing hormone receptors.;Millar;Endocr Rev,2004

3. Expression and signal transduction pathways of gonadotropin-releasing hormone receptors.;Stojilkovic;Recent Prog Horm Res,1995

4. GnRH receptor signalling to ERK: kinetics and compartmentalization.;Caunt;Trends Endocrinol Metab,2006

5. Nuclear localization and regulation of erk- and rsk-encoded protein kinases.;Chen;Mol Cell Biol,1992

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical models in GnRH research;Journal of Neuroendocrinology;2022-01-25

2. Dual-Specificity Phosphatases and Kidney Diseases;Kidney Diseases;2021-12-01

3. Gonadotropin-Releasing Hormone Receptors and Signaling;Cellular Endocrinology in Health and Disease;2021

4. Gonadotropin-releasing hormone signaling: An information theoretic approach;Molecular and Cellular Endocrinology;2018-03

5. Differential roles of PKC isoforms (PKCs) in GnRH stimulation of MAPK phosphorylation in gonadotrope derived cells;Molecular and Cellular Endocrinology;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3