Affiliation:
1. Laboratories for Integrated Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Bristol BS1 3NY, United Kingdom
Abstract
AbstractActivated ERK translocates to the nucleus to regulate transcription. Spatiotemporal aspects of this response dictate biological consequences and are influenced by dual-specificity phosphatases (DUSPs) that can scaffold and dephosphorylate ERK. In HeLa cells, GnRH causes transient and protein kinase C (PKC)-dependent ERK activation, but termination mechanisms are unknown. We now explore DUSP roles using short inhibitory RNA to knock down endogenous ERK, adenoviruses to express GnRH receptors and add-back ERK2-GFP, and automated microscopy to monitor ERK location and activation. GnRH caused rapid and transient increases in dual phosphorylated ERK2 (ppERK2) and nuclear to cytoplasmic ERK2-green fluorescent protein (GFP) ratio, whereas responses to a PKC-activating phorbol ester were more sustained. In cells expressing D319N ERK2-GFP (D319N mutation impairs docking-domain-dependent binding to DUSPs), GnRH caused more sustained increases in ppERK2 and nuclear to cytoplasmic ERK2-GFP ratio and also had more pronounced effects on Egr-1 luciferase (a transcriptional reporter for ERK activation). Cycloheximide caused more sustained effects of GnRH and phorbol ester on ppERK, suggesting termination by nuclear-inducible DUSPs. GnRH also increased expression of nuclear-inducible DUSP1 and -4, but their knockdown did not alter GnRH-mediated ERK signaling. Screening a short inhibitory RNA library targeting 16 DUSPs (nuclear-inducible DUSPs, cytoplasmic ERK MAPK phosphatases, c-Jun N-terminal kinase/p38 MAPK phosphatases, and atypical DUSPs) revealed GnRH effects to be influenced by DUSPs 5, 9, 10, 16, and 3 (i.e. by each DUSP class). Thus, GnRH-mediated ERK responses (like PKC-mediated ERK responses) are dependent on protein neosynthesis and docking-domain-dependent binding, but for GnRH activation (unlike PKC activation), this does not reflect dependence on nuclear-inducible DUSPs. Termination of these GnRH effects is apparently dependent upon a preexisting rapid turnover protein.
Subject
Endocrinology,Molecular Biology,General Medicine
Reference48 articles.
1. Gonadotropin-releasing hormone and its analogs.;Conn;Annu Rev Med,1994
2. Gonadotropin-releasing hormone receptors.;Millar;Endocr Rev,2004
3. Expression and signal transduction pathways of gonadotropin-releasing hormone receptors.;Stojilkovic;Recent Prog Horm Res,1995
4. GnRH receptor signalling to ERK: kinetics and compartmentalization.;Caunt;Trends Endocrinol Metab,2006
5. Nuclear localization and regulation of erk- and rsk-encoded protein kinases.;Chen;Mol Cell Biol,1992
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献