Inhibin-A Antagonizes TGFβ2 Signaling by Down-Regulating Cell Surface Expression of the TGFβ Coreceptor Betaglycan

Author:

Looyenga Brendan D.1,Wiater Ezra2,Vale Wylie2,Hammer Gary D.3

Affiliation:

1. Van Andel Research Institute (B.D.L.), Grand Rapids, Michigan 49503

2. Salk Institute for Biological Studies (E.W., W.V.), San Diego, California 92037

3. Department of Internal Medicine (G.D.H.), Division of Endocrinology, University of Michigan, Ann Arbor, Michigan 48109-2200

Abstract

AbstractInhibin is an atypical member of the TGFβ family of signaling ligands and is classically understood to function via competitive antagonism of activin ligand binding. Inhibin-null (Inha−/−) mice develop both gonadal and adrenocortical tumors, the latter of which depend upon gonadectomy for initiation. We have previously shown that gonadectomy initiates adrenal tumorigenesis in Inha−/− mice by elevating production of LH, which drives aberrant proliferation and differentiation of subcapsular adrenocortical progenitor cells. In this study, we demonstrate that LH signaling specifically up-regulates expression of TGFβ2 in the subcapsular region of the adrenal cortex, which coincides with regions of aberrant Smad3 activation in Inha−/− adrenal glands. Consistent with a functional interaction between inhibin and TGFβ2, we further demonstrate that recombinant inhibin-A antagonizes signaling by TGFβ2 in cultured adrenocortical cells. The mechanism of this antagonism depends upon the mutual affinity of inhibin-A and TGFβ2 for the signaling coreceptor betaglycan. Although inhibin-A cannot physically displace TGFβ2 from its binding sites on betaglycan, binding of inhibin-A to the cell surface causes endocytic internalization of betaglycan, thereby reducing the number of available binding sites for TGFβ2 on the cell surface. The mechanism by which inhibin-A induces betaglycan internalization is clathrin independent, making it distinct from the mechanism by which TGFβ ligands themselves induce betaglycan internalization. These data indicate that inhibin can specifically antagonize TGFβ2 signaling in cellular contexts where surface expression of betaglycan is limiting and provide a novel mechanism for activin-independent phenotypes in Inha−/− mice.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3