Adenosine-Regulated Cell Proliferation in Pituitary Folliculostellate and Endocrine Cells: Differential Roles for the A1 and A2B Adenosine Receptors

Author:

Rees D. A.,Lewis M. D.,Lewis B. M.,Smith P. J.1,Scanlon M. F.,Ham J.

Affiliation:

1. Departments of Medicine and Pathology (P.J.S.), University of Wales College of Medicine, Cardiff, United Kingdom CF14 4XN

Abstract

Abstract A1 and A2 adenosine receptors have been identified in the pituitary gland, but the cell type(s) on which they are located and their effects on pituitary cell growth are not known. Therefore, we analyzed the expression of A1 and A2 receptors in primary rat anterior pituitary cells, two pituitary folliculostellate (TtT/GF and Tpit/F1) and two pituitary endocrine (GH3 and AtT20) cell lines, and compared their effects on cell proliferation. In anterior pituitary and folliculostellate cells, adenosine and adenosine receptor agonists (5′-N-ethylcarboxamidoadenosine, a universal agonist, and CGS 21680, an A2A receptor agonist) stimulated cAMP levels with a rank order of potency that indicates the presence of functional A2B receptors. This stimulation, however, was not observed in either GH3 or AtT20 cells, where adenosine and the A1 receptor agonist 2-chloro-N6-cyclopentyladenosine inhibited VIP/forskolin-stimulated cAMP production. Expression of A2B and A1 receptors in the folliculostellate cells and that of the A1 receptor in the endocrine cells were confirmed by RT-PCR, immunocytochemistry, and ligand binding. Adenosine and 5′-N-ethylcarboxamidoadenosine dose-dependently (10 nm to 10 μm) stimulated growth in the folliculostellate, but not in the endocrine, cells, whereas in the latter, 100 μm adenosine and 2-chloro-N6-cyclopentyladenosine inhibited cell proliferation by slowing cell cycle progression. These data highlight the differential expression of A1 and A2B adenosine receptors in pituitary cells and provide evidence for opposing effects of adenosine on pituitary folliculostellate and endocrine cell growth.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3