The Type 2 and Type 3 Iodothyronine Deiodinases Play Important Roles in Coordinating Development in Rana catesbeiana Tadpoles*

Author:

Becker Kathryn B.1,Stephens Kristen C.1,Davey Jennifer C.1,Schneider Mark J.1,Galton Valerie Anne1

Affiliation:

1. Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756-0001

Abstract

Abstract In developing Rana catesbeiana tadpoles, the timing of the thyroid hormone (TH)-dependent metamorphic responses varies markedly among tissues. Yet at any one time these tissues are exposed to the same plasma concentration of TH, suggesting that TH action is regulated in part at the level of the peripheral tissues. A major factor in TH action is the intracellular level of the active TH, T3. This level is dependent not only on the plasma concentration of TH (mostly T4) but also on the intracellular activities of the type 2 5′-deiodinase (D2) and the type 3 5-deiodinase (D3), which are responsible, respectively, for generating and degrading T3. (D1 is not present in this species.) To determine whether differential expression of D2 and D3 among tissues could be a significant factor in the coordination of metamorphic events, the ontogenic profiles of the two enzyme activities and corresponding messenger RNA levels in most tissues of R. catesbeiana tadpoles have been documented. The profiles of D2 expression in tail, hindlimb, forelimb, intestine, skin, and eye differed markedly at both activity and messenger RNA levels, but it was notable that expression was invariably highest in a given tissue at the time of its major metamorphic change. D2 expression was very low in brain and heart and did not vary during development. D2 was not expressed in liver, kidney, or red blood cells. With the exception of red blood cells, D3 expression was detected in all tissues studied. Furthermore, it was evident that in tissues that expressed both deiodinase genes, the two expression profiles were comparable, indicating a potential for tight control of intracellular T3 levels. Direct evidence of the importance of the intracellular conversion of T4 to T3 for TH-dependent metamorphic events was obtained in tadpoles in which endogenous TH synthesis was blocked with methimazole, and the activities of D2 and D3 were inhibited by iopanoic acid. This treatment inhibited metamorphosis. The inhibition could be overcome by the concomitant administration of replacement levels of T3, but not T4. These results strongly support the view that coordinated development in amphibia depends in part on the tissue-specific expression patterns of the D2 and D3 genes, which ensure that the requisite level of intracellular T3 is attained in a given tissue, regardless of the current level of circulating TH, at the appropriate stage of metamorphosis.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference54 articles.

1. The biology of metamorphosis;Dodd;In: Lofts B (ed) Physiology of the Amphibia. Academic Press, New York, pp,1976

2. Expression of the Xenopus laevis prolactin and thyrotropin genes during metamorphosis.;Buckbinder;Proc Natl Acad Sci USA,1993

3. Morphological and functional maturation of the thyroid during early development of Anuran larvae.;Hanaoka;Gen Comp Endocrinol,1973

4. Mechanisms of amphibian metamorphosis: hormones.;Kollros;Am Zool,1961

5. The role of 3,5,3′-triiodothyronine in the physiological action of thyroxine in the premetamorphic tadpole.;Galton;Endocrinology,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3