Insulin-Like Growth Factor I Regulates Gonadotropin Responsiveness in the Murine Ovary

Author:

Zhou Jian1,Kumar T. Rajendra2,Matzuk Martin M.3,Bondy Carolyn1

Affiliation:

1. Developmental Endocrinology Branch (J.Z., C.B.) National Institute of Child Health and Human Development National Institutes of Health Bethesda, Maryland 20892

2. Department of Pathology (T.R.K.), Texas 77030

3. Molecular and Human Genetics and Cell Biology (M.M.M.) Baylor College of Medicine, Houston, Texas 77030

Abstract

Abstract The present study shows that insulin-like growth factor I (IGF-I) and FSH receptor (FSHR) mRNAs are selectively coexpressed in a subset of healthy-appearing follicles in murine ovaries, irrespective of cycle stage. Aromatase gene expression, a prime marker for FSH effect, is found only in IGF-I/FSHR- positive follicles, showing that these are healthy, gonadotropin-responsive follicles. Given the striking coexpression of FSHR and IGF-I, we hypothesized that FSH was responsible for follicular IGF-I expression. We found, however, that granulosa cell IGF-I mRNA levels are not reduced in hypophysectomized (±PMSG) or FSH knockout mice, indicating that FSH does not have a major role in regulation of granulosa cell IGF-I gene expression. To test the alternative hypothesis that IGF-I regulates FSHR gene expression, we studied ovaries from IGF-I knockout mice. FSHR mRNA was significantly reduced in ovaries from homozygous IGF-I knockout compared with wild type mice and was restored to control values by exogenous IGF-I treatment. The functional significance of the reduced FSHR gene expression in IGF-I knockout ovaries is suggested by reduced aromatase expression and by the failure of their follicles to develop normally beyond the early antral stage. In fact, IGF-I knockout and FSH knockout ovaries appear very similar in terms of arrested follicular development. In summary, we have shown that IGF-I and FSHR are selectively coexpressed in healthy, growing murine follicles and that FSH does not affect IGF-I expression but that IGF-I augments granulosa cell FSHR expression. These data suggest that ovarian IGF-I expression serves to enhance granulosa cell FSH responsiveness by augmenting FSHR expression.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3