Genomic Organization of Mouse Orexin Receptors: Characterization of Two Novel Tissue-Specific Splice Variants

Author:

Chen Jing1,Randeva Harpal S.1

Affiliation:

1. Molecular Medicine Group, Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

Abstract In humans and rat, orexins orchestrate divergent actions through their G protein-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Orexins also play an important physiological role in mouse, but the receptors through which they function are not characterized. To characterize the physiological role(s) of orexins in the mouse, we cloned and characterized the mouse orexin receptor(s), mOX1R and mOX2R, using rapid amplification of cDNA (mouse brain) ends, RT-PCR, and gene structure analysis. The mOX1R cDNA encodes a 416-amino acid (aa) receptor. We have identified two alternative C terminus splice variants of the mOX2R; mOX2αR (443 aa) and mOX2βR (460 aa). Binding studies in human embryonic kidney 293 cells transfected with mOX1R, mOX2αR, and the mOX2βR revealed specific, saturable sites for both orexin-A and -B. Activation of these receptors by orexins induced inositol triphosphate (IP3) turnover. However, human embryonic kidney 293 cells transfected with mOXRs demonstrated no cAMP response to either orexin-A or orexin-B challenge, although forskolin and GTPγS revealed a dose-dependent increase in cAMP. Although, orexin-A and -B showed no difference in binding characteristics between the splice variants; interestingly, orexin-B led to an increase in IP3 production at all concentrations in the mOX2βR variant. Orexin-A, however, showed no difference in IP3 production between the two variants. Additionally, in the mouse, we demonstrate that these splice variants are distributed in a tissue-specific manner, where OX2αR mRNA was undetectable in skeletal muscle and kidney. Moreover, food deprivation led to a greater increase in hypothalamic mOX2βR gene expression, compared with both mOX1R and mOX2αR. This potentially implicates a fundamental physiological role for these splice variants.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3