Progesterone Inhibits the Estrogen-Induced Phosphoinositide 3-Kinase→AKT→GSK-3β→Cyclin D1→pRB Pathway to Block Uterine Epithelial Cell Proliferation

Author:

Chen Bo1,Pan Haiyan1,Zhu Liyin1,Deng Yan1,Pollard Jeffrey W.1

Affiliation:

1. Departments of Developmental and Molecular Biology and Obstetrics, Gynecology and Women’s Health, Center for the Study of Reproductive Biology and Women’s Health, Albert Einstein College of Medicine, New York, New York 10461

Abstract

AbstractThe mammalian cell cycle is regulated by the cyclin/cyclin-dependent kinase (CDK) phosphorylation of the retinoblastoma (pRB) family of proteins. Cyclin D1 with its CDK4/6 partners initiates the cell cycle and acts as the link between extracellular signals and the cell cycle machinery. Estradiol-17β (E2) stimulates uterine epithelial cell proliferation, a process that is completely inhibited by pretreatment with progesterone (P4). Previously, we identified cyclin D1 localization as a key point of regulation in these cells with E2 causing its nuclear accumulation and P4 retaining it in the cytoplasm with the resultant inhibition of pRB phosphorylation. Here we show that E2 stimulates phosphoinositide 3-kinase to activate phosphokinase B/AKT to effect an inhibitory phosphorylation of glycogen synthase kinase (GSK-3β). This pathway is suppressed by P4. Inhibition of the GSK-3β activity in P4-treated uteri by the specific inhibitor, LiCl, reversed the nuclear accumulation of cyclin D1 and in doing so, caused pRB phosphorylation and the induction of downstream genes, proliferating cell nuclear antigen and Ki67. Conversely, inhibition of phosphoinositide 3 kinase by LY294002 or Wortmanin reversed the E2-induced GSK-3β Ser9 inhibitory phosphorylation and blocked nuclear accumulation of cyclin D1. These data show the reciprocal actions of E2 and P4 on the phosphoinositide 3-kinase through to the GSK-3β pathway that in turn regulates cyclin D1 localization and cell cycle progression. These data reveal a novel signaling pathway that links E2 and P4 action to growth factor-mediated signaling in the uterus.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference80 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3