Affiliation:
1. Department of Biochemistry and Molecular Biology and The Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292
Abstract
AbstractSeveral factors have been identified in the transcriptional repression of the steroidogenic acute regulatory protein (StAR) gene promoter; yet, no associating corepressor complexes have been characterized for the mouse promoter in MA-10 mouse Leydig tumor cells. We now report that Sp3, CAGA element binding proteins, and a corepressor complex consisting of mSin3A, histone deacetylase (HDAC)1, and HDAC2 associates with a transcriptional repressor region within the mouse StAR promoter. 5′-Promoter deletion analysis localized the negative regulatory region between −180 and −150 bp upstream of the transcription start site, and mutations in both the CAGA and Sp binding elements were required to relieve the repression of basal StAR promoter activity. Protein-DNA binding analysis revealed Sp3 and specific CAGA element-binding protein(s) associated with the repressor region. Coimmunoprecipitation analysis identified the presence of the mSin3A, HDAC1, and HDAC2 corepressor complex in MA-10 cells. Furthermore, chromatin immunoprecipitation assays revealed Sp3, mSin3A, and HDAC1/2 association with the proximal region of the StAR promoter in situ. In addition, HDAC inhibition resulted in a dose-dependent activation of a mouse StAR reporter construct, whereas mutations within the repressor region diminished this effect by 44%. In sum, these data support a novel regulatory mechanism for transcriptional repression of the mouse StAR promoter by DNA binding of Sp3 and CAGA element-binding proteins, and association of the Sin3 corepressor complex exhibiting HDAC activity.
Subject
Endocrinology,Molecular Biology,General Medicine
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献