Affiliation:
1. Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai , China
2. Shanghai Key Laboratory for Endocrine Tumors, Shanghai Institute of Endocrine and Metabolic Diseases , Shanghai , China
3. Center for quantitative biology, Peking University , Beijing , China
Abstract
Abstract
Context
Measurement of plasma steroids is necessary for diagnosis of congenital adrenal hyperplasia (CAH). We sought to establish an efficient strategy for detection and subtyping of CAH with a machine-learning algorithm.
Methods
Clinical phenotype and genetic testing were used to provide CAH diagnosis and subtype. We profiled 13 major steroid hormones by liquid chromatography-tandem mass spectrometry. A multiclassifier system was established to distinguish 11β-hydroxylase deficiency (11βOHD), 17α-hydroxylase/17,20-lyase deficiency (17OHD), and 21α-hydroxylase deficiency (21OHD) in a discovery cohort (n = 226). It was then validated in an independent cohort (n = 111) and finally applied in a perspective cohort of 256 patients. The diagnostic performance on the basis of area under receiver operating characteristic curves (AUCs) was evaluated.
Results
A cascade logistic regression model, we named the “Steroidogenesis Score”, was able to discriminate the 3 most common CAH subtypes: 11βOHD, 17OHD, and 21OHD. In the perspective application cohort, the steroidogenesis score had a high diagnostic accuracy for all 3 subtypes, 11βOHD (AUC, 0.994; 95% CI, 0.983-1.000), 17OHD (AUC, 0.993; 95% CI, 0.985-1.000), and 21OHD (AUC, 0.979; 95% CI, 0.964-0.994). For nonclassic 21OHD patients, the tool presented with significantly higher sensitivity compared with measurement of basal 17α-hydroxyprogesterone (17OHP) (0.973 vs 0.840, P = 0.005) and was not inferior to measurement of basal vs stimulated 17OHP (0.973 vs 0.947, P = 0.681).
Conclusions
The steroidogenesis score was biochemically interpretable and showed high accuracy in identifying CAH patients, especially for nonclassic 21OHD patients, thus offering a standardized approach to diagnose and subtype CAH.
Funder
National Science Foundation of China
National Key Research and Development Program of China
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献