The Presence of Active Brown Adipose Tissue Determines Cold-Induced Energy Expenditure and Oxylipin Profiles in Humans

Author:

Kulterer Oana C12,Niederstaetter Laura3,Herz Carsten T1,Haug Alexander R24,Bileck Andrea3,Pils Dietmar5ORCID,Kautzky-Willer Alexandra1,Gerner Christopher36,Kiefer Florian W1ORCID

Affiliation:

1. Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria

2. Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria

3. Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria

4. Christian-Doppler Laboratory for Applied Metabolomics, Division of Nuclear Medicine, Medical University of Vienna, Austria

5. Department of Surgery, Medical University of Vienna, Vienna, Austria

6. Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Vienna, Austria

Abstract

Abstract Background Accumulating evidence links brown adipose tissue (BAT) to increased cold-induced energy expenditure (CIEE) and regulation of lipid metabolism in humans. BAT has also been proposed as a novel source for biologically active lipid mediators including polyunsaturated fatty acids (PUFAs) and oxylipins. However, little is known about cold-mediated differences in energy expenditure and various lipid species between individuals with detectable BAT positive (BATpos) and those without BAT negative (BATneg). Methods Here we investigated a unique cohort of matched BATpos and BATneg individuals identified by 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography ([18F]-FDG PET/CT). BAT function, CIEE, and circulating oxylipins, were analyzed before and after short-term cold exposure using [18F]-FDG PET/CT, indirect calorimetry, and high-resolution mass spectrometry, respectively. Results We found that active BAT is the major determinant of CIEE since only BATpos individuals experienced significantly increased energy expenditure in response to cold. A single bout of moderate cold exposure resulted in the dissipation of an additional 20 kcal excess energy in BATpos but not in BATneg individuals. The presence of BAT was associated with a unique systemic PUFA and oxylipin profile characterized by increased levels of anti-inflammatory omega-3 fatty acids as well as cytochrome P450 products but decreased concentrations of some proinflammatory hydroxyeicosatetraenoic acids when compared with BATneg individuals. Notably, cold exposure raised circulating levels of various lipids, including the recently identified BAT-derived circulating factors (BATokines) DiHOME and 12-HEPE, only in BATpos individuals. Conclusions In summary, our data emphasize that BAT in humans is a major contributor toward cold-mediated energy dissipation and a critical organ in the regulation of the systemic lipid pool.

Funder

Vienna Science and Technology Fund

Austrian Science Fund

Austrian Diabetes Association Research Fund

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3