Neonatal Hypocalcemic Seizures in Offspring of a Mother With Familial Hypocalciuric Hypercalcemia Type 1 (FHH1)

Author:

Dharmaraj Poonam1,Gorvin Caroline M2,Soni Astha1,Nelhans Nick D3,Olesen Mie K2,Boon Hannah4,Cranston Treena4,Thakker Rajesh V2,Hannan Fadil M5ORCID

Affiliation:

1. Department of Paediatric Endocrinology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK

2. Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK

3. Department of Paediatrics, Wrexham Maelor Hospital, Wrexham, UK

4. Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford, UK

5. Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK

Abstract

Abstract Context Familial hypocalciuric hypercalcemia type 1 (FHH1) is caused by loss-of-function mutations of the calcium-sensing receptor (CaSR) and is considered a benign condition associated with mild-to-moderate hypercalcemia. However, the children of parents with FHH1 can develop a variety of disorders of calcium homeostasis in infancy. Objective The objective of this work is to characterize the range of calcitropic phenotypes in the children of a mother with FHH1. Methods A 3-generation FHH kindred was assessed by clinical, biochemical, and mutational analysis following informed consent. Results The FHH kindred comprised a hypercalcemic man and his daughter who had hypercalcemia and hypocalciuria, and her 4 children, 2 of whom had asymptomatic hypercalcemia, 1 was normocalcemic, and 1 suffered from transient neonatal hypocalcemia and seizures. The hypocalcemic infant had a serum calcium of 1.57 mmol/L (6.28 mg/dL); normal, 2.0 to 2.8 mmol/L (8.0-11.2 mg/dL) and parathyroid hormone of 2.2 pmol/L; normal 1.0 to 9.3 pmol/L, and required treatment with intravenous calcium gluconate infusions. A novel heterozygous p.Ser448Pro CaSR variant was identified in the hypercalcemic individuals, but not the children with hypocalcemia or normocalcemia. Three-dimensional modeling predicted the p.Ser448Pro variant to disrupt a hydrogen bond interaction within the CaSR extracellular domain. The variant Pro448 CaSR, when expressed in HEK293 cells, significantly impaired CaSR-mediated intracellular calcium mobilization and mitogen-activated protein kinase responses following stimulation with extracellular calcium, thereby demonstrating it to represent a loss-of-function mutation. Conclusions Thus, children of a mother with FHH1 can develop hypercalcemia or transient neonatal hypocalcemia, depending on the underlying inherited CaSR mutation, and require investigations for serum calcium and CaSR mutations in early childhood.

Funder

Wellcome Trust Investigator

National Institute for Health Research Senior Investigator

National Institute for Health Research Oxford Biomedical Research Centre

Horizon 2020 Programme of the European Union

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3