Metabolites as Risk Factors for Diabetic Retinopathy in Patients With Type 2 Diabetes: A 12-Year Follow-up Study

Author:

Fernandes Silva Lilian1ORCID,Hokkanen Jenna1,Vangipurapu Jagadish1ORCID,Oravilahti Anniina1,Laakso Markku12ORCID

Affiliation:

1. Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland , 70211 Kuopio , Finland

2. Department of Internal Medicine, Kuopio University Hospital , 70211 Kuopio , Finland

Abstract

Abstract Context Diabetic retinopathy (DR) is a specific microvascular complication in patients with diabetes and the leading cause of blindness. Recent advances in omics, especially metabolomics, offer the possibility identifying novel potential biomarkers for DR. Objective The aim was to identify metabolites associated with DR. Methods We performed a 12-year follow-up study including 1349 participants with type 2 diabetes (1021 without DR, 328 with DR) selected from the METSIM cohort. Individuals who had retinopathy before the baseline study were excluded (n = 63). The diagnosis of retinopathy was based on fundus photography examination. We performed nontargeted metabolomics profiling to identify metabolites. Results We found 17 metabolites significantly associated with incident DR after adjustment for confounding factors. Among amino acids, N-lactoyl isoleucine, N-lactoyl valine, N-lactoyl tyrosine, N-lactoyl phenylalanine, N-(2-furoyl) glycine, and 5-hydroxylysine were associated with an increased risk of DR, and citrulline with a decreased risk of DR. Among the fatty acids N,N,N-trimethyl-5-aminovalerate was associated with an increased risk of DR, and myristoleate (14:1n5), palmitoleate (16:1n7), and 5-dodecenoate (12:1n7) with a decreased risk of DR. Sphingomyelin (d18:2/24:2), a sphingolipid, was significantly associated with a decreased risk of DR. Carboxylic acid maleate and organic compounds 3-hydroxypyridine sulfate, 4-vinylphenol sulfate, 4-ethylcatechol sulfate, and dimethyl sulfone were significantly associated with an increased risk of DR. Conclusion Our study is the first large population-based longitudinal study to identify metabolites for DR. We found multiple metabolites associated with an increased and decreased risk for DR from several different metabolic pathways.

Funder

Academy of Finland

National Institute of Heath

Sigrid Juselius Foundation

Finnish Foundation for Cardiovascular Research

Kuopio University Hospital

Centre of Excellence of Cardiovascular and Metabolic Diseases

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ferric particle-assisted LDI-MS platform for metabolic fingerprinting of diabetic retinopathy;Clinical Chemistry and Laboratory Medicine (CCLM);2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3