The First Compound Heterozygous Mutations ofDMP1Causing Rare Autosomal Recessive Hypophosphatemic Rickets Type 1

Author:

Ni Xiaolin1,Gong Yiyi2ORCID,Jiang Yan1ORCID,Li Xiang1,Pang Qianqian1,Liu Wei1,Chi Yue1,Jiajue Ruizhi1,Wang Ou1,Li Mei1ORCID,Xing Xiaoping1,Xia Weibo1ORCID

Affiliation:

1. Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing 100730 , China

2. Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing 100730 , China

Abstract

AbstractContextHereditary hypophosphatemic rickets (HR) consists of a group of inherited hypophosphatemia due to mutations of different genes, which need genetic analysis to make a differential diagnosis. Among them, autosomal recessive hypophosphatemic rickets type 1 (ARHR1), caused by a homozygous mutation of dentin matrix protein 1 (DMP1), is extremely rare, with only 30 reported patients. To date, there has been no case with compound heterozygous DMP1 mutations.ObjectiveTo report the first compound heterozygous mutations of DMP1 causing ARHR1 and confirm the effect of the mutation on DMP1 protein.MethodsWe report the clinical features of a Chinese patient with HR. Whole-exome sequencing (WES) was performed on the proband. Then, Cytoscan HD array, Sanger sequencing, and genomic quantitative PCR (qPCR) were used to confirm the mutations. A cell experiment was conducted to explore the effect of the mutation.ResultsThe proband is a 4-year-old boy, who developed genu varum when he was able to walk at age 1 year and tooth loss after a mild hit at age 3.5 years. Physical examination, biochemical measurement, and imaging finding indicated HR. Family history was negative. WES performed on the proband revealed a novel start codon mutation (c.1A > T, p.Met1Leu) in DMP1 and a large deletion involving most of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family gene, including DSPP, DMP1, IBSP, and MEPE. The novel paternally inherited start codon mutation, which resulted in decreased expression of DMP1 protein with smaller molecular weight and cleavage defect, was confirmed by Sanger sequencing. The maternally inherited deletion was validated by Cytoscan and qPCR, and the breakpoint was finally identified by long-range PCR and Sanger sequencing. Manifestation of dentin dysplasia (DD) or dentinogenesis imperfecta (DGI) caused by DSPP mutations was absent in the patient and his mother, confirming that haploinsufficiency could not lead to DD or DGI.ConclusionWe report for the first time compound heterozygous DMP1 mutations consisting of a large deletion and a novel start codon mutation (c.1A > T, p.Met1Leu) in a Chinese patient with ARHR1.

Funder

National Natural Science Foundation of China

CAMS Innovation Fund for Medical Sciences

National Key R&D Program of China

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3