High-fat Overfeeding Does Not Exacerbate Rapid Changes in Forearm Glucose and Fatty Acid Balance During Immobilization

Author:

Dirks Marlou L1ORCID,Wall Benjamin T1,Otten Britt1,Cruz Ana M1,Dunlop Mandy V1,Barker Alan R1,Stephens Francis B1ORCID

Affiliation:

1. Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK

Abstract

Abstract Context Physical inactivity and high-fat overfeeding have been shown to independently induce insulin resistance. Objective Establish the contribution of muscle disuse and lipid availability to the development of inactivity-induced insulin resistance. Design, Setting, Participants, and Interventions 20 healthy males underwent 7 days of forearm cast immobilization combined with a fully controlled eucaloric diet (n = 10, age 23 ± 2 yr, body mass index [BMI] 23.8 ± 1.0 kg·m-2) or a high-fat diet (HFD) providing 50% excess energy from fat (high-fat diet, n = 10, age 23 ± 2 yr, BMI 22.4 ± 0.8 kg·m-2). Main Outcome Measures Prior to casting and following 2 and 7 days of immobilization, forearm glucose uptake (FGU) and nonesterified fatty acid (NEFA) balance were assessed using the arterialized venous–deep venous (AV-V) forearm balance method following ingestion of a mixed macronutrient drink. Results 7 days of HFD increased body weight by 0.9 ± 0.2 kg (P = 0.002), but did not alter fasting, arterialized whole-blood glucose and serum insulin concentrations or the associated homeostatic model assessment of insulin resistance or Matsuda indices. Two and 7 days of forearm immobilization led to a 40 ± 7% and 52 ± 7% decrease in FGU, respectively (P < 0.001), with no difference between day 2 and 7 and no effect of HFD. Forearm NEFA balance tended to increase following 2 and 7 days of immobilization (P = 0.095). Conclusions Forearm immobilization leads to a rapid and substantial decrease in FGU, which is accompanied by an increase in forearm NEFA balance but is not exacerbated by excess dietary fat intake. Altogether, our data suggest that disuse-induced insulin resistance of glucose metabolism occurs as a physiological adaptation in response to the removal of muscle contraction.

Funder

Physiological Society

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3