Cross-species Association Between Telomere Length and Glucocorticoid Exposure

Author:

Lee Richard S1,Zandi Peter P12,Santos Alicia3,Aulinas Anna3,Carey Jenny L1,Webb Susan M3,McCaul Mary E1,Resmini Eugenia3ORCID,Wand Gary S14ORCID

Affiliation:

1. Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

2. Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA

3. Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit747), IIB-Sant Pau, ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain

4. Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA

Abstract

Abstract Context Chronic exposure to glucocorticoids (GCs) or stress increases the risk of medical disorders, including cardiovascular and neuropsychiatric disorders. GCs contribute to accelerated aging; however, while the link between chronic GC exposure and disease onset is well established, the underpinning mechanisms are not clear. Objective We explored the potential nexus between GCs or stress exposure and telomere length. Methods In addition to rats exposed to 3 weeks of chronic stress, an iatrogenic mouse model of Cushing syndrome (CS), and a mouse neuronal cell line, we studied 32 patients with CS and age-matched controls and another cohort of 75 healthy humans. Results (1) Exposure to stress in rats was associated with a 54.5% (P = 0.036) reduction in telomere length in T cells. Genomic DNA (gDNA) extracted from the dentate gyrus of stressed and unstressed rats showed 43.2% reduction in telomere length (P = 0.006). (2) Mice exposed to corticosterone had a 61.4% reduction in telomere length in blood gDNA (P = 5.75 × 10-5) and 58.8% reduction in telomere length in the dentate gyrus (P = 0.002). (3) We observed a 40.8% reduction in the telomere length in patients with active CS compared to healthy controls (P = 0.006). There was a 17.8% reduction in telomere length in cured CS patients, which was not different from that of healthy controls (P = 0.08). For both cured and active CS, telomere length correlated significantly with duration of hypercortisolism (R2 = 0.22, P = 0.007). (4) There was a 27.6% reduction in telomere length between low and high tertiles in bedtime cortisol levels of healthy participants (P = 0.019). Conclusion Our findings demonstrate that exposure to stress and/or GCs is associated with shortened telomeres, which may be partially reversible.

Funder

Baker Foundation

Rales Family Foundation

National Institutes of Health

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3