Comprehensive Long-Read Sequencing Analysis Discloses the Transcriptome Features of Papillary Thyroid Microcarcinoma

Author:

Wang Yanqiang1ORCID,Zou Binbin1,Zhang Yanyan2,Zhang Jin2,Li Shujing2,Yu Bo2,An Zhekun1,Li Lei2,Cui Siqian2,Zhang Yutong1,Yao Jiali1,Shi Xiuzhi1,Liu Jing2ORCID

Affiliation:

1. Key Laboratory of Cellular Physiology of the Ministry of Education (Shanxi Medical University), Translational Medicine Research Center, Department of Pathology, Shanxi Medical University , Taiyuan, Shanxi 030001 , China

2. Department of Thyroid Surgery, First Hospital of Shanxi Medical University , Taiyuan, Shanxi 030001 , China

Abstract

Abstract Context Papillary thyroid microcarcinoma (PTMC) is the most common type of thyroid cancer. It has been shown that lymph node metastasis is associated with poor prognosis in patients with PTMC. Objective We aim to characterize the PTMC transcriptome landscape and identify the candidate transcripts that are associated with lateral neck lymph node metastasis of PTMC. Methods We performed full-length transcriptome sequencing in 64 PTMC samples. Standard bioinformatic pipelines were applied to characterize and annotate the full-length expression profiles of 2 PTMC subtypes. Functional open reading frame (ORF) annotation of the known and novel transcripts were predicted by HMMER, DeepLoc, and DeepTMHMM tools. Candidate transcripts associated with the pN1b subtype were identified after transcript quantification and differential gene expression analyses. Results We found that skipping exons accounted for the more than 27.82% of the alternative splicing events. At least 42.56% of the discovered transcripts were novel isoforms of annotated genes. A total of 39 193 ORFs in novel transcripts and 18 596 ORFs in known transcripts were identified. Distribution patterns of the characterized transcripts in functional domain, subcellular localization, and transmembrane structure were predicted. In total, 1033 and 1204 differentially expressed genes were identified in the pN0 and pN1b groups, respectively. Moreover, novel isoforms of FRMD3, NOD1, and SHROOM4 were highlighted for their association with pN1b subtype. Conclusion Our data provided the global transcriptome landscape of PTMC and also revealed the novel isoforms that associated with PTMC aggressiveness.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3