Congenital Hypothyroidism Due to Truncating PAX8 Mutations: A Case Series and Molecular Function Studies

Author:

Iwahashi-Odano Megumi12,Nagasaki Keisuke3ORCID,Fukami Maki1ORCID,Nishioka Junko4,Yatsuga Shuichi4,Asakura Yumi5,Adachi Masanori5,Muroya Koji5ORCID,Hasegawa Tomonobu6ORCID,Narumi Satoshi16ORCID

Affiliation:

1. Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan

2. Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan

3. Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

4. Department of Pediatrics and Child Health, Kurume University School of Medicine, Fukuoka, Japan

5. Department of Endocrinology and Metabolism, Kanagawa Children’s Medical Center, Yokohama, Japan

6. Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan

Abstract

Abstract Context PAX8 is a transcription factor required for thyroid development, and its mutation causes congenital hypothyroidism (CH). More than 20 experimentally verified loss-of-function PAX8 mutations have been described, and all but one were located in the DNA-binding paired domain. Objective We report the identification and functional characterization of 3 novel truncating PAX8 mutations located outside the paired domain. Methods Three CH probands, diagnosed in the frame of newborn screening, had thyroid hypoplasia and were treated with levothyroxine. Next-generation sequencing-based mutation screening was performed. Functionality of the identified mutations were verified with Western blotting, intracellular localization assays, and transactivation assays with use of HeLa cells. Luciferase complementation assays were used to evaluate the effect of mutations on the interaction between PAX8 and its partner, NKX2-1. Results Each proband had novel truncating PAX8 mutations that were I160Sfs*52, Q213Efs*27, and F342Rfs*85. Western blotting showed destabilization of the I160fs-PAX8 protein. Q213fs-PAX8 and F342fs-PAX8 showed normal protein expression levels and normal nuclear localization, but showed loss of transactivation of the luciferase reporter. By luciferase complementation assays, we showed that PAX8-NKX2-1 interaction was defective in Q213fs-PAX8. We also characterized the recombinant PAX8 proteins, and found that the protein sequence corresponding to exon 10 (363-400 aa residues) was essential for the PAX8-NKX2-1 interaction. Conclusions Clinical and molecular findings of 3 novel truncating PAX8 mutations located outside the paired domain were reported. Experiments using cultured cells and recombinant proteins showed that the C-terminal portion (ie, 363-400 aa) of PAX8 is required for the PAX8-NKX2-1 interaction.

Funder

Japan Society for the Promotion of Science

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3