High Levels of Thyroid Hormone Impair Regulatory T Cell Function Via Reduced PD-1 Expression

Author:

Zhong Yi1,Lu Ting-Ting1,Liu Xiao-Mei1,Liu Bing-Li1,Hu Yun1,Liu Shu1,Wang Jie1,Li Guo-Qing1,Mao Xiao-Ming1ORCID

Affiliation:

1. Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China

Abstract

Abstract Context Regulatory T cell (Treg) dysfunction plays an important role in the development and progression of Graves’ disease (GD). Programmed cell death 1 (PD-1) prompts FoxP3 in Treg expression and enhances the suppressive activity of Tregs. Whether abnormal expression of PD-1 contributes to the breakdown of Tregs and the role of thyroid hormone in the PD-1 expression of Tregs in GD remain substantially undefined. Objective To evaluate the role of PD-1 in Treg function and triiodothyronine (T3) in PD-1 expression in patients with GD and mice treated with T3. Methods We recruited 30 patients with GD and 30 healthy donors. PD-1 expression in Tregs and Treg function were determined. To evaluate the effects of thyroid hormone on PD-1 expression in Tregs, we used T3 for the treatment of human peripheral blood mononuclear cells (PBMCs). We then treated mice with T3 to confirm the effect of thyroid hormone on PD-1 expression in Tregs and Tregs function in vivo. Results PD-1 expression in Tregs and the suppressive function of Tregs significantly decreased in patients with GD. T3 reduced PD-1 expression in human Tregs in a concentration- and time-dependent manner in vitro. High levels of circulating T3 reduced PD-1 expression in Tregs, impaired Treg function, and disrupted T-helper cell (Th1 and Th2) balance in mice treated with T3. Conclusion Treg dysfunction in GD patients might be due to downregulation of PD-1 expression in Tregs induced by high levels of serum T3.

Funder

National Natural Science Foundation of China

Nanjing Medical Science and Technology Progressing

Natural Science Foundation of Jiangsu Province

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3