Adrenomedullin-RAMP2 and -RAMP3 Systems Regulate Cardiac Homeostasis during Cardiovascular Stress

Author:

Cui Nanqi1,Sakurai Takayuki12,Kamiyoshi Akiko12,Ichikawa-Shindo Yuka1,Kawate Hisaka1,Tanaka Megumu1,Tanaka Masaaki1,Wei Yangxuan1,Kakihara Shinji1,Zhao Yunlu1,Aruga Kohsuke1,Kawagishi Hiroyuki34,Nakada Tsutomu5,Yamada Mitsuhiko3,Shindo Takayuki12ORCID

Affiliation:

1. Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan

2. Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan

3. Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan

4. Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan

5. Department of Instrumental Analysis, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan

Abstract

Abstract Adrenomedullin (AM) is a peptide hormone with multiple physiological functions, which are regulated by its receptor activity–modifying proteins, RAMP2 and RAMP3. We previously reported that AM or RAMP2 knockout (KO) (AM–/–, RAMP2–/–) is embryonically lethal in mice, whereas RAMP3–/– mice are apparently normal. AM, RAMP2, and RAMP3 are all highly expressed in the heart; however, their functions there are not fully understood. Here, we analyzed the pathophysiological functions of the AM-RAMP2 and AM-RAMP3 systems in hearts subjected to cardiovascular stress. Cardiomyocyte-specific RAMP2–/– (C-RAMP2–/–) and RAMP3–/– showed no apparent heart failure at base line. After 1 week of transverse aortic constriction (TAC), however, C-RAMP2–/– exhibited significant cardiac hypertrophy, decreased ejection fraction, and increased fibrosis compared with wild-type mice. Both dP/dtmax and dP/dtmin were significantly reduced in C-RAMP2–/–, indicating reduced ventricular contractility and relaxation. Exposing C-RAMP2–/– cardiomyocytes to isoproterenol enhanced their hypertrophy and oxidative stress compared with wild-type cells. C-RAMP2–/– cardiomyocytes also contained fewer viable mitochondria and showed reduced mitochondrial membrane potential and respiratory capacity. RAMP3–/– also showed reduced systolic function and enhanced fibrosis after TAC, but those only became apparent after 4 weeks. A reduction in cardiac lymphatic vessels was the characteristic feature in RAMP3–/–. These observations indicate the AM-RAMP2 system is necessary for early adaptation to cardiovascular stress through regulation of cardiac mitochondria. AM-RAMP3 is necessary for later adaptation through regulation of lymphatic vessels. The AM-RAMP2 and AM-RAMP3 systems thus play separate critical roles in the maintenance of cardiovascular homeostasis against cardiovascular stress.

Funder

JSPS KAKENHI

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3