A Multiomics Atlas of Brown Adipose Tissue Development Over Time

Author:

Kumagai Yutaro1ORCID,Saito Yutaka23,Kida Yasuyuki S14

Affiliation:

1. Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology , Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 , Japan

2. Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST) , 2-4-7 Aomi, Koto-ku, Tokyo 135-0064 , Japan

3. AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 , Japan

4. School of Integrative & Global Majors, University of Tsukuba , 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572 , Japan

Abstract

Abstract Brown adipose tissue (BAT) regulates homeostatic energy balances in response to physiological changes such as nutrition intake, calorie restriction, exercise, and environmental temperature by consuming energy to generate heat, and thus serves as an important organ for obesity and metabolic diseases. We performed an integrated transcriptomic and metabolomic characterization of developing mouse BAT from embryo to adult to obtain a time-resolved picture of BAT development. We demonstrated that there are 2 distinct developmental changes that are BAT specific. We also examined transcription factor binding sites and discovered key transcription factors in the developmental time course. A comparison of our data with other organ development transcriptome and metabolome data revealed BAT-specific transcriptome and metabolome patterns. Our findings provide an overview of mouse BAT development as well as implications for developmental and functional BAT controls.

Funder

KAKENHI

The Uehara Memorial Foundation

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3