Identification of Novel Regulatory Regions Induced by Intrauterine Growth Restriction in Rat Islets

Author:

Lien Yu-Chin12ORCID,Pinney Sara E134,Lu Xueqing Maggie5,Simmons Rebecca A124ORCID

Affiliation:

1. Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

2. Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA

3. Division Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA

4. Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

5. Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Abstract

Abstract Intrauterine growth restriction (IUGR) leads to the development of type 2 diabetes in adulthood, and the permanent alterations in gene expression implicate an epigenetic mechanism. Using a rat model of IUGR, we performed TrueSeq-HELP Tagging to assess the association of DNA methylation changes and gene dysregulation in islets. We identified 511 differentially methylated regions (DMRs) and 4377 significantly altered single CpG sites. Integrating the methylome and our published transcriptome data sets resulted in the identification of pathways critical for islet function. The identified DMRs were enriched with transcription factor binding motifs, such as Elk1, Etv1, Foxa1, Foxa2, Pax7, Stat3, Hnf1, and AR. In silico analysis of 3-dimensional chromosomal interactions using human pancreas and islet Hi-C data sets identified interactions between 14 highly conserved DMRs and 35 genes with significant expression changes at an early age, many of which persisted in adult islets. In adult islets, there were far more interactions between DMRs and genes with significant expression changes identified with Hi-C, and most of them were critical to islet metabolism and insulin secretion. The methylome was integrated with our published genome-wide histone modification data sets from IUGR islets, resulting in further characterization of important regulatory regions of the genome altered by IUGR containing both significant changes in DNA methylation and specific histone marks. We identified novel regulatory regions in islets after exposure to IUGR, suggesting that epigenetic changes at key transcription factor binding motifs and other gene regulatory regions may contribute to gene dysregulation and an abnormal islet phenotype in IUGR rats.

Funder

National Institutes of Health

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3