Functionally Selective Inhibition of the Oxytocin Receptor by Retosiban in Human Myometrial Smooth Muscle

Author:

Brighton Paul J1,Fossler Michael J2,Quenby Siobhan13ORCID,Blanks Andrew M1ORCID

Affiliation:

1. Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick CV2 2DX, UK

2. Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, Upper Merion West, King of Prussia, Pennsylvania

3. Maternity Directorate, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK

Abstract

Abstract Novel small molecule inhibitors of the oxytocin receptor (OTR) may have distinct pharmacology and mode of action when compared with first-generation oxytocin antagonists when used for the prevention of preterm birth. The aim was to determine the mechanism of action of small molecule OTR antagonists retosiban and epelsiban compared with the currently used peptide-based compound atosiban. Human myometrial samples were obtained at cesarean section and subjected to pharmacological manipulations to establish the effect of antagonist binding to OTR on downstream signaling. Retosiban antagonism of oxytocin action in human myometrium was potent, rapid, and reversible. Inhibition of inositol 1,4,5-trisphosphate (IP3) production followed single-site competitive binding kinetics for epelsiban, retosiban, and atosiban. Retosiban inhibited basal production of IP3 in the absence of oxytocin. Oxytocin and atosiban but not retosiban inhibited forskolin, and calcitonin stimulated 3′,5′-cyclic adenosine 5′-mono-phosphate (cAMP) production. Inhibition of cAMP was reversed by pertussis toxin. Oxytocin and atosiban, but not retosiban and epelsiban, stimulated extracellular regulated kinase (ERK)1/2 activity in a time- and concentration-dependent manner. Oxytocin and atosiban stimulated cyclo-oxygenase 2 activity and subsequent production of prostaglandin E2 and F2α. Prostaglandin production was inhibited by rofecoxib, pertussin toxin, and ERK inhibitor U0126. Oxytocin but not retosiban or atosiban stimulated coupling of the OTR to Gα q G-proteins. Oxytocin and atosiban but not retosiban stimulated coupling of the OTR to Gα i G-proteins. Retosiban and epelsiban demonstrate distinct pharmacology when compared with atosiban in human myometrial smooth muscle. Atosiban displays agonist activity at micromolar concentrations leading to stimulation of prostaglandin production.

Funder

GlaxoSmithKline

Publisher

The Endocrine Society

Subject

Endocrinology

Reference27 articles.

1. Born too soon: the global epidemiology of 15 million preterm births;Blencowe;Reprod Health.,2013

2. Epidemiology and causes of preterm birth;Goldenberg;Lancet.,2008

3. Estimates of neonatal morbidities and disabilities at regional and global levels for 2010: introduction, methods overview, and relevant findings from the Global Burden of Disease study,2013

4. Economic burden of hospitalizations for preterm labor in the United States;Nicholson;Obstet Gynecol.,2000

5. Safety and efficacy of tocolytics for the treatment of spontaneous preterm labour;Lamont;Curr Pharm Des.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3