Conditional Deletion of KOR (Oprk1) in Kisspeptin Cells Does Not Alter LH Pulses, Puberty, or Fertility in Mice

Author:

Coutinho Eulalia A1,Esparza Lourdes A1,Hudson Alexandra D1,Rizo Nathanael1,Steffen Paige1,Kauffman Alexander S1ORCID

Affiliation:

1. Department of OBGYN and Reproductive Sciences, University of California San Diego , La Jolla, CA 92093 , USA

Abstract

Abstract Classic pharmacological studies suggested that endogenous dynorphin-KOR signaling is important for reproductive neuroendocrine regulation. With the seminal discovery of an interconnected network of hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B, and dynorphin (KNDy neurons), the KNDy hypothesis was developed to explain how gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) pulses are generated. Key to this hypothesis is dynorphin released from KNDy neurons acting in a paracrine manner on other KNDy neurons via kappa opioid receptor (KOR) signaling to terminate neural “pulse” events. While in vitro evidence supports this aspect of the KNDy hypothesis, a direct in vivo test of the necessity of KOR signaling in kisspeptin neurons for proper LH secretion has been lacking. We therefore conditionally knocked out KOR selectively from kisspeptin neurons of male and female mice and tested numerous reproductive measures, including in vivo LH pulse secretion. Surprisingly, despite validating successful knockout of KOR in kisspeptin neurons, we found no significant effect of kisspeptin cell-specific deletion of KOR on any measure of puberty, LH pulse parameters, LH surges, follicle-stimulating hormone (FSH) levels, estrous cycles, or fertility. These outcomes suggest that the KNDy hypothesis, while sufficient normally, may not be the only neural mechanism for sculpting GnRH and LH pulses, supported by recent findings in humans and mice. Thus, besides normally acting via KOR in KNDy neurons, endogenous dynorphin and other opioids may, under some conditions, regulate LH and FSH secretion via KOR in non-kisspeptin cells or perhaps via non-KOR pathways. The current models for GnRH and LH pulse generation should be expanded to consider such alternate mechanisms.

Funder

National Institutes of Health

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3