Zebrafish cyp11c1 Knockout Reveals the Roles of 11-ketotestosterone and Cortisol in Sexual Development and Reproduction

Author:

Zhang Qifeng12,Ye Ding12ORCID,Wang Houpeng1,Wang Yaqing12,Hu Wei12,Sun Yonghua12ORCID

Affiliation:

1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design (INASEED), Chinese Academy of Sciences, Wuhan, China

2. College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China

Abstract

Abstract Androgen is essential for male development and cortisol is involved in reproduction in fishes. However, the in vivo roles of cortisol and specific androgens such as 11-ketotestosterone (11-KT) in reproductive development need to be described with genetic models. Zebrafish cyp11c1 encodes 11β-hydroxylase, which is essential for the biosynthesis of 11-KT and cortisol. In this study, we generated a zebrafish mutant of cyp11c1 (cyp11c1-/-) and utilized it to clarify the roles of 11-KT and cortisol in sexual development and reproduction. The cyp11c1-/- fish had smaller genital papilla and exhibited defective natural mating but possessed mature gametes and were found at a sex ratio comparable to the wildtype control. The cyp11c1-/- males showed delayed and prolonged juvenile ovary-to-testis transition and displayed defective spermatogenesis at adult stage, which could be rescued by treatment with 11-ketoandrostenedione (11-KA) at certain stages. Specifically, during testis development of cyp11c1-/- males, the expression of insl3, cyp17a1, and amh was significantly decreased, suggesting that 11-KT is essential for the development and function of Leydig cells and Sertoli cells. Further, spermatogenesis-related dmrt1 was subsequently downregulated, leading to insufficient spermatogenesis. The cyp11c1-/- females showed a reduction in egg spawning and a failure of in vitro germinal vesicle breakdown, which could be partially rescued by cortisol treatment. Taken together, our study reveals that zebrafish Cyp11c1 is not required for definite sex differentiation but is essential for juvenile ovary-to-testis transition, Leydig cell development, and spermatogenesis in males through 11-KT, and it is also involved in oocyte maturation and ovulation in females through cortisol.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

State Key Laboratory of Freshwater Ecology and Biotechnology

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3