The Human Glucocorticoid Receptor Beta: From Molecular Mechanisms to Clinical Implications

Author:

Nicolaides Nicolas C1234ORCID

Affiliation:

1. Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children's Hospital , Athens 11527 , Greece

2. Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens , Athens 11527 , Greece

3. University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School , Athens 11527 , Greece

4. Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics , Nicosia 2371 , Cyprus

Abstract

Abstract Glucocorticoids play a fundamental role in a plethora of cellular processes and physiologic functions through binding on a ubiquitously expressed receptor, the glucocorticoid receptor (GR), which functions as a ligand-activated transcription factor influencing the transcription rate of numerous genes in a positive or negative fashion. For many years, we believed that the pleiotropic actions of glucocorticoids were mediated by a single GR protein expressed by the NR3C1 gene. Nowadays, we know that the NR3C1 gene encodes 2 main receptor isoforms, the GRα and the GRβ, through alternative splicing of the last exons. Furthermore, the alternative initiation of GR mRNA translation generates 8 distinct GRα and possibly 8 different GRβ receptor isoforms. The tremendous progress of cellular, molecular, and structural biology in association with the data explosion provided by bioinformatics have enabled a deeper understanding of the role of GRβ in cellular homeostasis. In this review article, I will provide an update on the cellular properties and functions of hGRβ and summarize the current knowledge about the evolving role of the beta isoform of glucocorticoid receptor in endocrine physiology, pathophysiology, and beyond.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3