Warm Responsive Neurons in the Hypothalamic Preoptic Area are Potent Regulators of Glucose Homeostasis in Male Mice

Author:

Deem Jennifer D1,Phan Bao Anh1,Ogimoto Kayoko1,Cheng Alice1,Bryan Caeley L1,Scarlett Jarrad M12,Schwartz Michael W1,Morton Gregory J1ORCID

Affiliation:

1. Department of Medicine, UW Medicine Diabetes Institute, University of Washington , Seattle, WA 98109 , USA

2. Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital , Seattle, WA 98145 , USA

Abstract

Abstract When mammals are exposed to a warm environment, overheating is prevented by activation of “warm-responsive” neurons (WRNs) in the hypothalamic preoptic area (POA) that reduce thermogenesis while promoting heat dissipation. Heat exposure also impairs glucose tolerance, but whether this also results from activation of POA WRNs is unknown. To address this question, we sought in the current work to determine if glucose intolerance induced by heat exposure can be attributed to activation of a specific subset of WRNs that express pituitary adenylate cyclase-activating peptide (ie, POAPacap neurons). We report that when mice are exposed to an ambient temperature sufficiently warm to activate POAPacap neurons, the expected reduction of energy expenditure is associated with glucose intolerance, and that these responses are recapitulated by chemogenetic POAPacap neuron activation. Because heat-induced glucose intolerance was not blocked by chemogenetic inhibition of POAPacap neurons, we conclude that POAPacap neuron activation is sufficient, but not required, to explain the impairment of glucose tolerance elicited by heat exposure.

Funder

NIH

Nutrition Obesity Research Center

Diabetes Research Center

Nutrition, Obesity, and Atherosclerosis Training

University of Washington

Department of Defense

American Diabetes Association

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3