NC1-Peptide From Collagen α3 (IV) Chains in the Basement Membrane of Testes Regulates Spermatogenesis via p-FAK-Y407

Author:

Li Huitao12,Liu Shiwen12,Wu Siwen12,Ge Renshan1,Cheng C Yan12ORCID

Affiliation:

1. The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China

2. The Mary Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York

Abstract

Abstract The blood–testis barrier (BTB) in the testis is an important ultrastructure to support spermatogenesis. This blood-tissue barrier undergoes remodeling at late stage VII to early stage IX of the epithelial cycle to support the transport of preleptotene spermatocytes across the BTB to prepare for meiosis I/II at the apical compartment through a mechanism that remains to be delineated. Studies have shown that NC1-peptide-derived collagen α3 (IV) chain in the basement membrane is a bioactive peptide that induces BTB remodeling. It also promotes the release of fully developed spermatids into the tubule lumen. Thus, this endogenously produced peptide coordinates these 2 cellular events across the seminiferous epithelium. Using an NC1-peptide complementary deoxyribonucleic acid (cDNA) construct to transfect adult rat testes for overexpression, NC1-peptide was found to effectively induce germ cell exfoliation and BTB remodeling, which was associated with a surge and activation of p-rpS6, the downstream signaling protein of mTORC1 and the concomitant downregulation of p-FAK-Y407 in the testis. In order to define the functional relationship between p-rpS6 and p-FAK-Y407 signaling to confer the ability of NC1-peptide to regulate testis function, a phosphomimetic (and thus constitutively active) mutant of p-FAK-Y407 (p-FAK-Y407E-MT) was used for its co-transfection, utilizing Sertoli cells cultured in vitro with a functional tight junction (TJ) barrier that mimicked the BTB in vivo. Overexpression of p-FAK-Y407E-MT blocked the effects of NC1-peptide to perturb Sertoli cell BTB function by promoting F-actin and microtubule cytoskeleton function, and downregulated the NC1-peptide-mediated induction of p-rpS6 activation. In brief, NC1-peptide is an important endogenously produced biomolecule that regulates BTB dynamics.

Funder

National Institutes of Health

National Natural Science Foundation of China

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3