Gut Hormone GIP Induces Inflammation and Insulin Resistance in the Hypothalamus

Author:

Fu Yukiko12,Kaneko Kentaro1,Lin Hsiao-Yun1,Mo Qianxing3,Xu Yong14ORCID,Suganami Takayoshi2ORCID,Ravn Peter5,Fukuda Makoto1ORCID

Affiliation:

1. Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas

2. Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan

3. Dan L Duncan Cancer Center and Center for Cell Gene & Therapy, Baylor College of Medicine, Houston, Texas

4. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas

5. AstraZeneca, R&D BioPharmaceuticals Unit, Department of Antibody Discovery and Protein Engineering, Cambridge, UK

Abstract

Abstract The hypothalamus plays a critical role in controlling energy balance. High-fat diet (HFD) feeding increases the gene expression of proinflammatory mediators and decreases insulin actions in the hypothalamus. Here, we show that a gut-derived hormone, glucose-dependent insulinotropic polypeptide (GIP), whose levels are elevated during diet-induced obesity, promotes and mediates hypothalamic inflammation and insulin resistance during HFD-induced obesity. Unbiased ribonucleic acid sequencing of GIP-stimulated hypothalami revealed that hypothalamic pathways most affected by intracerebroventricular (ICV) GIP stimulation were related to inflammatory-related responses. Subsequent analysis demonstrated that GIP administered either peripherally or centrally, increased proinflammatory-related factors such as Il-6 and Socs3 in the hypothalamus, but not in the cortex of C57BL/6J male mice. Consistently, hypothalamic activation of IκB kinase-β inflammatory signaling was induced by ICV GIP. Further, hypothalamic levels of proinflammatory cytokines and Socs3 were significantly reduced by an antagonistic GIP receptor (GIPR) antibody and by GIPR deficiency. Additionally, centrally administered GIP reduced anorectic actions of insulin in the brain and diminished insulin-induced phosphorylation of Protein kinase B and Glycogen synthase kinase 3β in the hypothalamus. Collectively, these findings reveal a previously unrecognized role for brain GIP signaling in diet-induced inflammation and insulin resistance in the hypothalamus.

Funder

U.S. Department of Agriculture

Agriculture Research Services

National Institutes of Health

Uehara Memorial Foundation

P30 Digestive Disease Center Support

P30 Cancer Center Support

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3