Cadmium-induced Sertoli Cell Injury Through p38-MAPK and Related Signaling Proteins—A Study by RNA Sequencing

Author:

Wang Lingling1,Li Xinyao1,Bu Tiao1,Wu Xiaolong2,Li Linxi3,Gao Sheng1,Yun Damin1,Zhang Yan4,Chen Hao1ORCID,Sun Fei1ORCID,Cheng C Yan1ORCID

Affiliation:

1. Institute of Reproductive Medicine, Medical School of Nantong University , Nantong, Jiangsu 226001 , China

2. Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang 310016 , China

3. The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University , Wenzhou, Zhejiang 325027 , China

4. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, Hebei 050049 , China

Abstract

AbstractEnvironmental toxicants, such as cadmium, found in foods, water, and consumer products are known to induce male reproductive dysfunction. However, the underlying molecular mechanism(s) by which cadmium-induced Sertoli cell injury as manifested by a disruption of the blood-testis barrier (BTB) remains unknown. Interestingly, one of the primary targets of cadmium toxicity in the testis is the cytoskeletons of the Sertoli cells, which, in turn, impedes cell junctions in the seminiferous epithelium. In order to expand these earlier observations and to provide a roadmap for future studies, we embarked a study using RNA sequencing to identify the pertinent genes involved in cadmium-induced Sertoli cell injury. Using bioinformatics analyses, multiple gene sets that regulated actin and microtubule (MT) cytoskeletons were identified along with components of the mitogen-activated protein kinase (MAPK) signaling protein and several signaling pathways. More important, we have also discovered that while the gene expression of p38-MAPK (also JNK or c-Jun) was considerably up- or downregulated during cadmium-induced Sertoli cell injury, the activated (phosphorylated) form was upregulated. Importantly, doramapimod (also known as BIRB 796), a specific p38-MARK inhibitor, that was shown to selectively block cadmium-induced p-p38 MAPK activation via phosphorylation in Sertoli cells, was indeed capable of blocking cadmium-induced Sertoli cell injury including disruption of the Sertoli cell-permeability barrier function, disruptive distribution of BTB-associated proteins, and disruptive organization of the actin and MT cytoskeletons. These data provide a helpful source of information for investigators to probe the role of signaling proteins and/or their signaling cascades, besides MAPKs, that likely utilized by cadmium to induce reproductive dysfunction.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Ningxia Hui Autonomous Region

National Natural Science Foundation of China

The Jiangsu Province Postgraduate Research Award

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3