The Endothelial Barrier Is not Rate-limiting to Insulin Action in the Myocardium of Male Mice

Author:

Sanwal Rajiv1,Khosraviani Negar1,Advani Suzanne L2,Advani Andrew23ORCID,Lee Warren L1234ORCID

Affiliation:

1. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

2. Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario, Canada

3. Department of Medicine, University of Toronto, Toronto, Ontario, Canada

4. Department of Biochemistry and the Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada

Abstract

Abstract To act on tissues, circulating insulin must perfuse the relevant organ and then leave the bloodstream by crossing the endothelium—a process known as insulin delivery. It has been postulated that the continuous endothelium is a rate-limiting barrier to insulin delivery but existing data are contradictory. This conflict is in part due to the limitations of current models, including the inability to maintain a constant blood pressure in animals and the absence of shear stress in cultured cells. We developed a murine cardiac ex vivo perfusion model that delivers insulin to the heart in situ at a constant flow. We hypothesized that if the endothelial barrier were rate-limiting to insulin delivery, increasing endothelial permeability would accelerate insulin action. The kinetics of myocardial insulin action were determined in the presence or absence of agents that increased endothelial permeability. Permeability was measured using Evans Blue, which binds with high affinity to albumin. During our experiments, the myocardium remained sensitive to insulin and the vasculature retained barrier integrity. Perfusion with insulin induced Akt phosphorylation in myocytes but not in the endothelium. Infusion of platelet-activating factor or vascular endothelial growth factor significantly increased permeability to albumin without altering insulin action. Amiloride, an inhibitor of fluid-phase uptake, also did not alter insulin action. These data suggest that the endothelial barrier is not rate limiting to insulin’s action in the heart; its passage out of the coronary circulation is consistent with diffusion or convection. Modulation of transendothelial transport to overcome insulin resistance is unlikely to be a viable therapeutic strategy.

Funder

Heart and Stroke Foundation of Canada

Canadian Institutes of Health Research

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3