Genetic Manipulation on Zebrafish duox Recapitulate the Clinical Manifestations of Congenital Hypothyroidism

Author:

Sun Feng1,Fang Ya1,Zhang Man-Man1,Zhang Rui-Jia1,Wu Feng-Yao1,Yang Rui-Meng1,Tu Ping-Hui1,Dong Mei1,Zhao Shuang-Xia1ORCID,Song Huai-Dong1ORCID

Affiliation:

1. Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

Abstract

Abstract Congenital hypothyroidism (CH) is a highly prevalent but treatable neonatal endocrine disorder. Thyroid dyshormonogenesis is the main cause of congenital hypothyroidism in Chinese CH patients, and DUOX2 is the most frequent mutated gene involved in H2O2 production. In humans, the primary sources for H2O2 production are DUOX1 and DUOX2, while in zebrafish there is only a single orthologue for DUOX1 and DUOX2. In this study, duox mutant zebrafish were generated through knockdown duox by morpholino or knockout duox by CRISPR Cas9. The associated phenotypes were investigated and rescued by thyroxine (T4) treatment. Mutant zebrafish displayed hypothyroid phenotypes including growth retardation, goiter and, infertility. Homozygous mutants in adults also displayed extrathyroidal abnormal phenotypes, including lacking barbels, pigmentation defects, erythema in the opercular region, ragged fins, and delayed scales. All these abnormal phenotypes can be rescued by 10 nM T4 treatment. Strikingly, the fertility of zebrafish was dependent on thyroid hormone; T4 treatment should be continued and cannot be stopped over 2 weeks in hypothyroid zebrafish in order to achieve fertility. Thyroid hormones played a role in the developing and maturing of reproductive cells. Our work indicated that duox mutant zebrafish may provide a model for human congenital hypothyroidism.

Funder

Chinese National Key Research Program

National Natural Science Foundation of China

Shanghai Science and Technology Committee

Shanghai Municipal Education Commission Two-hundred Talent

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3