Reduced Expression of the Co-regulator TLE1 in Type 2 Diabetes Is Associated with Increased Islet α-Cell Number

Author:

Armour Sarah L1,Anderson Scott J1,Richardson Sarah J2,Ding Yuchun3,Carey Chris4,Lyon James5,Maheshwari Rashmi R1,Al-Jahdami Najwa1,Krasnogor Natalio3,Morgan Noel G2,MacDonald Patrick5,Shaw James A M16ORCID,White Michael G1ORCID

Affiliation:

1. Institute of Cellular Medicine, Diabetes Research Group, Newcastle University Medical School, Framlington Place, UK

2. Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK

3. Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle Helix, UK

4. Molecular Pathology Node Proximity Laboratory, Royal Victoria Infirmary, UK

5. Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada

6. Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE6 BXH, UK

Abstract

Abstract β-Cell dysfunction in type 2 diabetes (T2D) is associated with loss of cellular identity and mis-expression of alternative islet hormones, including glucagon. The molecular basis for these cellular changes has been attributed to dysregulation of core β-cell transcription factors, which regulate β-cell identity through activating and repressive mechanisms. The TLE1 gene lies near a T2D susceptibility locus and, recently, the glucagon repressive actions of this transcriptional coregulator have been demonstrated in vitro. We investigated whether TLE1 expression is disrupted in human T2D, and whether this is associated with increased islet glucagon-expressing cells. Automated image analysis following immunofluorescence in donors with (n = 7) and without (n = 7) T2D revealed that T2D was associated with higher islet α/β cell ratio (Control: 0.7 ± 0.1 vs T2D: 1.6 ± 0.4; P < .05) and an increased frequency of bihormonal (insulin+/glucagon+) cells (Control: 0.8 ± 0.2% vs T2D: 2.0 ± 0.4%, P < .05). In nondiabetic donors, the majority of TLE1-positive cells were mono-hormonal β-cells (insulin+/glucagon–: 98.2 ± 0.5%; insulin+/glucagon+: 0.7 ± 0.2%; insulin–/glucagon+: 1.1 ± 0.4%; P < .001). TLE1 expression was reduced in T2D (Control: 36 ± 2.9% vs T2D: 24 ± 2.6%; P < .05). Reduced islet TLE1 expression was inversely correlated with α/β cell ratio (r = –0.55; P < .05). TLE1 knockdown in EndoC-βH1 cells was associated with a 2.5-fold increase in glucagon gene mRNA and mis-expression of glucagon in insulin-positive cells. These data support TLE1 as a putative regulator of human β-cell identity, with dysregulated expression in T2D associated with increased glucagon expression potentially reflecting β- to α-cell conversion.

Funder

Diabetes UK

Society for Endocrinology

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3