Impact of Circadian Disruption on Female Mice Reproductive Function

Author:

Bahougne Thibault12ORCID,Kretz Mathilda12,Angelopoulou Eleni1,Jeandidier Nathalie2,Simonneaux Valérie1

Affiliation:

1. Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and University of Strasbourg, Strasbourg, France

2. Service d’Endocrinologie et Diabète, Hôpitaux Universitaires de Strasbourg, Strasbourg, France

Abstract

Abstract In female mammals, cycles in reproductive function depend both on the biological clock synchronized to the light/dark cycle and on a balance between the negative and positive feedbacks of estradiol, whose concentration varies during oocyte maturation. In women, studies report that chronodisruptive environments such as shiftwork may impair fertility and gestational success. The objective of this study was to explore the effects of shifted light/dark cycles on both the robustness of the estrous cycles and the timing of the preovulatory luteinizing hormone (LH) surge in female mice. When mice were exposed to a single 10-hour phase advance or 10-hour phase delay, the occurrence and timing of the LH surge and estrous cyclicity were recovered at the third estrous cycle. By contrast, when mice were exposed to chronic shifts (successive rotations of 10-hoursour phase advances for 3 days followed by 10-hour phase delays for 4 days), they exhibited a severely impaired reproductive activity. Most mice had no preovulatory LH surge at the beginning of the chronic shifts. Furthermore, the gestational success of mice exposed to chronic shifts was reduced, because the number of pups was 2 times lower in shifted than in control mice. In conclusion, this study reports that exposure of female mice to a single phase shift has minor reproductive effects, whereas exposure to chronically disrupted light/dark cycles markedly impairs the occurrence of the preovulatory LH surge, leading to reduced fertility.

Funder

Fondation pour la Recherche Médicale

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3