Central Irisin Signaling Is Required for Normal Timing of Puberty in Female Mice

Author:

Decourt Caroline1ORCID,Evans Maggie C1,Inglis Megan A1,Anderson Greg M1

Affiliation:

1. Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences , Dunedin 9016 , New Zealand

Abstract

Abstract Timing of puberty requires exquisite coordination of genes, hormones, and brain circuitry. An increasing level of body adiposity, signaled to the brain via the fat-derived hormone leptin, is recognized as a major factor controlling puberty onset. However, it is clear that leptin is not the only metabolic cue regulating puberty, and that developmental regulation of this process also involves tissues other than adipose, with muscle development potentially playing a role in the timing of puberty. The proteolytic processing of fibronectin type 3 domain-containing protein 5 (FNDC5) releases a hormone, irisin. Irisin is primarily produced by muscle and is released into circulation, where levels increase dramatically as puberty approaches. We investigated the effects of a global deletion of the Fndc5 gene on pubertal timing. The absence of irisin induced a delay in puberty onset in female knockout mice compared with controls, without affecting body weight or gonadotropin-releasing hormone (GnRH) neuronal density. We next treated pre-pubertal wild-type male and female mice with an irisin receptor antagonist, cilengitide, for 7 days and observed a delay in first estrus occurrence compared to vehicle-treated control mice. Male puberty timing was unaffected. Next, we deleted the irisin receptor (integrin subunit alpha V) in all forebrain neurons and found a delay in the occurrence of first estrus in knockout females compared to controls. Taken together, these data suggest irisin plays a role in the timing of puberty onset in female mice via a centrally mediated mechanism.

Funder

University of Otago

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3