HIV-1 Establishes a Sanctuary Site in the Testis by Permeating the BTB Through Changes in Cytoskeletal Organization

Author:

Wu Siwen12,Frank Ines2,Derby Nina23,Martinelli Elena24,Cheng C Yan12ORCID

Affiliation:

1. The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China

2. Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA

3. Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA

4. Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

Abstract

Abstract Studies suggest that HIV-1 invades the testis through initial permeation of the blood–testis barrier (BTB). The selectivity of the BTB to antiretroviral drugs makes this site a sanctuary for the virus. Little is known about how HIV-1 crosses the BTB and invades the testis. Herein, we used 2 approaches to examine the underlying mechanism(s) by which HIV-1 permeates the BTB and gains entry into the seminiferous epithelium. First, we examined if recombinant Tat protein was capable of perturbing the BTB and making the barrier leaky, using the primary rat Sertoli cell in vitro model that mimics the BTB in vivo. Second, we used HIV-1–infected Sup-T1 cells to investigate the activity of HIV-1 infection on cocultured Sertoli cells. Using both approaches, we found that the Sertoli cell tight junction permeability barrier was considerably perturbed and that HIV-1 effectively permeates the BTB by inducing actin-, microtubule-, vimentin-, and septin-based cytoskeletal changes in Sertoli cells. These studies suggest that HIV-1 directly perturbs BTB function, potentially through the activity of the Tat protein.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institutes of Health

National Institute of Allergy and Infectious Diseases

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3