Bartter Syndrome Type 1 Due to Novel SLC12A1 Mutations Associated With Pseudohypoparathyroidism Type II

Author:

Kiuchi Zentaro1ORCID,Nozu Kandai2ORCID,Yan Kunimasa13,Jüppner Harald45

Affiliation:

1. Department of Pediatrics, Kyorin University School of Medicine , Mitaka, Tokyo , Japan

2. Department of Pediatrics, Kobe University Graduate School of Medicine , Kobe, Hyogo , Japan

3. Department of Pediatrics, Kosei Hospital , Suginami, Tokyo , Japan

4. Endocrine Unit, Massachusetts General Hospital and Harvard Medical School , Boston, MA , USA

5. Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School , Boston, MA , USA

Abstract

Abstract Bartter syndrome type 1 is caused by mutations in the solute carrier family 12 member 1 (SLC12A1), encoding the sodium-potassium-chloride cotransporter-2 (NKCC2). In addition to causing renal salt-losing tubulopathy, SLC12A1 mutations are known to cause nephrocalcinosis due to hypercalciuria, as well as failure to thrive associated with abnormal calcium and phosphorus homeostasis. We report a now 7-year-old Japanese girl with polyuria, hyponatremia, hypokalemia, and metabolic alkalosis, in whom compound heterozygous novel SLC12A1 mutations were identified. Elevated parathyroid hormone (PTH) levels were consistently noted after the age of 1 year in conjunction with gradually declining serum calcium and increasing serum phosphorus levels. To confirm suspected PTH-resistance, Ellsworth Howard tests were performed at the ages of 6 years 8 months and 6 years 10 months in the absence or presence of ibuprofen, respectively. Urinary adenosine 3′,5′-cyclic monophosphate excretion increased on both occasions in response to PTH(1-34) infusion suggesting pseudohypoparathyroidism type II. However, only during treatment with ibuprofen did PTH induce an almost normal phosphaturic response. The nonsteroidal anti-inflammatory drugs thus enhanced growth velocity, alleviated hypercalciuria, and increased PTH-stimulated urinary phosphorus excretion without significantly affecting renal function.

Funder

JSPS

Publisher

The Endocrine Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3