Leptin Receptor Signaling in Sim1-Expressing Neurons Regulates Body Temperature and Adaptive Thermogenesis

Author:

Cakir Isin12,Diaz-Martinez Myriam3,Lining Pan Pauline2,Welch E Brian3,Patel Sachin4,Ghamari-Langroudi Masoud1ORCID

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee

2. Life Sciences Institute, University of Michigan, Ann Arbor, Michigan

3. Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee

4. Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee

Abstract

Abstract Leptin signals to regulate food intake and energy expenditure under conditions of normative energy homeostasis. The central expression and function of leptin receptor B (LepRb) have been extensively studied during the past two decades; however, the mechanisms by which LepRb signaling dysregulation contributes to the pathophysiology of obesity remains unclear. The paraventricular nucleus of the hypothalamus (PVN) plays a crucial role in regulating energy balance as well as the neuroendocrine axes. The role of LepRb expression in the PVN in regard to the regulation of physiological function of leptin has been controversial. The single-minded homolog 1 gene (Sim1) is densely expressed in the PVN and in parts of the amygdala, making Sim1-Cre mice a useful model for examining molecular mechanisms regulating PVN function. In this study, we characterized the physiological role of LepRb in Sim1-expressing neurons using LepRb-floxed × Sim1-Cre mice. Sim1-specific LepRb-deficient mice were surprisingly hypophagic on regular chow but gained more weight upon exposure to a high-fat diet than did their control littermates. We show that Sim1-specific deletion of a single LepRb gene copy caused decreased surface and core body temperatures as well as decreased energy expenditure in ambient room temperatures in both female and male mice. Furthermore, cold-induced adaptive (nonshivering) thermogenesis is disrupted in homozygous knockout mice. A defective thermoregulatory response was associated with defective cold-induced upregulation of uncoupling protein 1 in brown adipose tissue and reduced serum T4. Our study provides novel functional evidence supporting LepRb signaling in Sim1 neurons in the regulation of body weight, core body temperature, and cold-induced adaptive thermogenesis.

Funder

Qatar National Research Fund

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3