Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids

Author:

Haider Sandra1,Gamperl Magdalena2,Burkard Thomas R34,Kunihs Victoria1,Kaindl Ulrich2,Junttila Sini5,Fiala Christian6,Schmidt Katy2,Mendjan Sasha3,Knöfler Martin1,Latos Paulina A2ORCID

Affiliation:

1. Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria

2. Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria

3. Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria

4. Research Institute of Molecular Pathology, Vienna, Austria

5. Vienna BioCenter Core Facilities, Vienna, Austria

6. Gynmed Clinic, Vienna, Austria

Abstract

Abstract The human endometrium is the inner lining of the uterus consisting of stromal and epithelial (secretory and ciliated) cells. It undergoes a hormonally regulated monthly cycle of growth, differentiation, and desquamation. However, how these cyclic changes control the balance between secretory and ciliated cells remains unclear. Here, we established endometrial organoids to investigate the estrogen (E2)-driven control of cell fate decisions in human endometrial epithelium. We demonstrate that they preserve the structure, expression patterns, secretory properties, and E2 responsiveness of their tissue of origin. Next, we show that the induction of ciliated cells is orchestrated by the coordinated action of E2 and NOTCH signaling. Although E2 is the primary driver, inhibition of NOTCH signaling provides a permissive environment. However, inhibition of NOTCH alone is not sufficient to trigger ciliogenesis. Overall, we provide insights into endometrial biology and propose endometrial organoids as a robust and powerful model for studying ciliogenesis in vitro.

Funder

Austrian Science Fund

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3