A Familial Thyrotropin (TSH) Receptor Mutation Provides in Vivo Evidence that the Inositol Phosphates/Ca2+ Cascade Mediates TSH Action on Thyroid Hormone Synthesis

Author:

Grasberger Helmut1,Van Sande Jacqueline2,Hag-Dahood Mahameed Ahmad3,Tenenbaum-Rakover Yardena45,Refetoff Samuel671

Affiliation:

1. Departments of Medicine (H.G., S.R.), The University of Chicago, Chicago, Illinois 60637

2. Institute of Interdisciplinary Research (J.V.S.), University of Brussels, 1070 Brussels, Belgium

3. Institute of Clalit Health Service (A.H.-D.M.), Um-El Fahem 30010, Israel

4. Institute of Technicon Faculty of Medicine (Y.T.-R.), Haifa 31096, Israel

5. Institute of Pediatric Endocrine Unit (Y.T.-R.), Ha’Emek Medical Center, Afula 18101, Israel

6. Departments of Committee on Genetics (S.R.), The University of Chicago, Chicago, Illinois 60637

7. Departments of Pediatrics (S.R.), The University of Chicago, Chicago, Illinois 60637

Abstract

AbstractContext: In the human thyroid gland, TSH activates both the cAMP and inositol phosphates (IP) signaling cascades via binding to the TSH receptor (TSHR). Biallelic TSHR loss-of-function mutations cause resistance to TSH, clinically characterized by hyperthyrotropinemia, and normal or reduced thyroid gland volume, thyroid hormone output, and iodine uptake.Objective: We report and study a novel familial TSHR mutation (L653V).Results: Homozygous individuals expressing L653V had euthyroid hyperthyrotropinemia. Paradoxically, patients had significantly higher 2-h radioiodide uptake and 2- to 24-h radioiodide uptake ratios compared with heterozygous, unaffected family members, suggesting an imbalance between iodide trapping and organification. In transfected COS-7 cells, the mutant TSHR had normal surface expression, basal activity, and TSH-binding affinity, equally (2.2-fold) increased EC50 values for TSH-induced cAMP and IP accumulation, and normal maximum cAMP generation. In contrast, the efficacy of TSH for generating IP was more than 7-fold lower with the mutant compared with wild-type TSHR.Conclusions: We identified and characterized a TSHR defect, preferentially affecting the IP pathway, with a phenotype distinct from previously reported loss-of-function mutations. Results provide the first in vivo evidence for the physiological role of the TSHR/IP/Ca2+ cascade in regulating iodination. According to systematic in vitro mutagenesis studies, other TSHR mutations can result in even complete loss of IP signaling with retained cAMP induction. We hypothesize that such TSHR mutations could be the cause in unexplained partial organification defects.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3