Role of Aldose Reductase and Oxidative Damage in Diabetes and the Consequent Potential for Therapeutic Options

Author:

Srivastava Satish K.1,Ramana Kota V.1,Bhatnagar Aruni2

Affiliation:

1. Department of Human Biological Chemistry and Genetics (S.K.S., K.V.R.), University of Texas Medical Branch, Galveston, Texas 77555;

2. Division of Cardiology (A.B.), Department of Medicine, University of Louisville, Louisville, Kentucky 40202

Abstract

Aldose reductase (AR) is widely expressed aldehyde-metabolizing enzyme. The reduction of glucose by the AR-catalyzed polyol pathway has been linked to the development of secondary diabetic complications. Although treatment with AR inhibitors has been shown to prevent tissue injury in animal models of diabetes, the clinical efficacy of these drugs remains to be established. Recent studies suggest that glucose may be an incidental substrate of AR, which appears to be more adept in catalyzing the reduction of a wide range of aldehydes generated from lipid peroxidation. Moreover, inhibition of the enzyme has been shown to increase inflammation-induced vascular oxidative stress and prevent myocardial protection associated with the late phase of ischemic preconditioning. On the basis of these studies, several investigators have ascribed an important antioxidant role to the enzyme. Additionally, ongoing work indicates that AR is a critical component of intracellular signaling, and inhibition of the enzyme prevents high glucose-, cytokine-, or growth factor-induced activation of protein kinase C and nuclear factor-κ-binding protein. Thus, treatment with AR inhibitors prevents vascular smooth muscle cell growth and endothelial cell apoptosis in culture and inflammation and restenosis in vivo. Additional studies indicate that the antioxidant and signaling roles of AR are interlinked and that AR regulates protein kinase C and nuclear factor-κB via redox-sensitive mechanisms. These data underscore the need for reevaluating anti-AR interventions for the treatment of diabetic complications. Potentially, the development of newer drugs that selectively inhibit ARmediated glucose metabolism and signaling, without affecting aldehyde detoxification, may be useful in preventing inflammation associated with the development of diabetic complications, particularly micro- and macrovascular diseases.

Publisher

The Endocrine Society

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3