Extranuclear Steroid Receptors: Nature and Actions

Author:

Hammes Stephen R.1,Levin Ellis R.23

Affiliation:

1. Division of Endocrinology and the Departments of Medicine and Pharmacology (S.R.H.), University of Texas Southwestern Medical Center, Dallas, Texas 75390;

2. Division of Endocrinology (E.R.L.), Veterans Affairs Medical Center, Long Beach, Long Beach, California 90822;

3. Departments of Medicine, Biochemistry, and Pharmacology (E.R.L.), University of California, Irvine, Irvine, California 92697

Abstract

Rapid effects of steroid hormones result from the actions of specific receptors localized most often to the plasma membrane. Fast-acting membrane-initiated steroid signaling (MISS) 1leads to the modification of existing proteins and cell behaviors. Rapid steroid-triggered signaling through calcium, amine release, and kinase activation also impacts the regulation of gene expression by steroids, sometimes requiring integration with nuclear steroid receptor function. In this and other ways, the integration of all steroid actions in the cell coordinates outcomes such as cell fate, proliferation, differentiation, and migration. The nature of the receptors is of intense interest, and significant data suggest that extranuclear and nuclear steroid receptor pools are the same proteins. Insights regarding the structural determinants for membrane localization and function, as well as the nature of interactions with G proteins and other signaling molecules in confined areas of the membrane, have led to a fuller understanding of how steroid receptors effect rapid actions. Increasingly, the relevance of rapid signaling for the in vivo functions of steroid hormones has been established. Examples include steroid effects on reproductive organ development and function, cardiovascular responsiveness, and cancer biology. However, although great strides have been made, much remains to be understood concerning the integration of extranuclear and nuclear receptor functions to organ biology. In this review, we highlight the significant progress that has been made in these areas.

Publisher

The Endocrine Society

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3