Differential Role of Progesterone Receptor Isoforms in the Transcriptional Regulation of Human Gonadotropin-Releasing Hormone I (GnRH I) Receptor, GnRH I, and GnRH II

Author:

An Beum-Soo1,Choi Jung-Hye1,Choi Kyung-Chul1,Leung Peter C. K.1

Affiliation:

1. Department of Obstetrics and Gynecology, British Columbia Research Institute for Children’s and Women’s Health, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5

Abstract

Hypothalamic GnRH is a decapeptide that plays a pivotal role in mammalian reproduction by stimulating the synthesis and secretion of gonadotropins via binding to the GnRH receptor on the pituitary gonadotropins. It is hypothesized that sex steroids may regulate GnRH I (a classical form of GnRH), GnRH II (a second form of GnRH), and GnRH I receptor (GnRHRI) at the transcriptional level in target tissues. Thus, in the present study a role for progesterone (P4) in the regulation of GnRH I, GnRH II, and GnRHRI was investigated using a human neuronal medulloblastoma cell line (TE671) as an in vitro model. The cells were transfected with human GnRHRI promoter-luciferase constructs, and promoter activities were analyzed after P4 treatment by luciferase and β-galactosidase assay. The mRNA levels of GnRH I and GnRH II were analyzed by RT-PCR. Treatment of TE671 cells with P4 resulted in a decrease in GnRHRI promoter activity compared with the control level in a dose- and time-dependent manner. Cotreatment of these cells with RU486, an antagonist of P4, reversed P4-induced inhibition of GnRHRI promoter activity, suggesting that the P4 effect is mediated by P4 receptor (PR). In the cells transfected with a full-length of PR A- or PR B-expressing vector, overexpression of PR A increased the sensitivity toward P4 in an inhibition of GnRHRI promoter, whereas PR B increased transcriptional activity of GnRHRI promoter in the presence of P4. However, PR B itself did not act as a transcriptional activator of GnRHRI promoter. Because TE671 cells have been recently demonstrated to express and synthesize two forms of GnRHs, we also investigated the regulation of GnRH mRNAs by P4. In the present study, P4 increased GnRH I mRNA levels in a time- and dose-dependent manner. This stimulatory effect of P4 in the regulation of GnRH I mRNAs was significantly attenuated by RU486, whereas no significant difference in the expression level of GnRH II was observed with P4 or RU496. Interestingly, although the expression level of PR B was low compared with that of PR A, P4 action on the GnRH I gene was mediated by PR B. In conclusion, these results indicate that P4 is a potent regulator of GnRHRI at the transcriptional level as well as GnRH I mRNA. This distinct effect of P4 on the GnRH system may be derived from different pathways through PR A or PR B.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference56 articles.

1. Expression and regulation of gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acids in human granulosa-luteal cells.;Peng;Endocrinology,1994

2. Gonadotropin-releasing hormone receptor gene expression in human ovary and granulosa-lutein cells.;Minaretzis;J Clin Endocrinol Metab,1995

3. Expression of human gonadotropin-releasing hormone receptor gene in the placenta and its functional relationship to human chorionic gonadotropin secretion.;Lin;J Clin Endocrinol Metab,1995

4. Stimulation of mitogen-activated protein kinase by gonadotropin-releasing hormone in human granulosa-luteal cells.;Kang;Endocrinology,2001

5. Modulation of the steroidogenesis of cultured human granulosa-lutein cells by gonadotropin-releasing hormone analogs.;Bussenot;J Clin Endocrinol Metab,1993

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3