Endometriosis-Specific Genes Identified by Real-Time Reverse Transcription-Polymerase Chain Reaction Expression Profiling of Endometriosis Versus Autologous Uterine Endometrium

Author:

Hu Wei-Ping1,Tay Sun Kuie1,Zhao Yi2

Affiliation:

1. Departments of Obstetrics and Gynecology (W.-P.H., S.K.T) Republic of Singapore 169608

2. Clinical Research (Y.Z.), Singapore General Hospital, Republic of Singapore 169608

Abstract

Abstract Context: The etiology and molecular pathogenesis of endometriosis, a prevalent estrogen-dependent gynecologic disease, are poorly understood. Objective: The objective of the study was to identify the differentially expressed genes between autologous ectopic and eutopic endometrium. Design: Subtractive hybridization was used for a genome-wide search for differentially expressed genes between autologous ectopic and eutopic endometrium. Real-time RT-PCR was used for gene expression profiling in the paired tissue samples taken from multiple subjects. Patients: The paired pelvic endometriosis and uterine endometrium tissue biopsies were procured from 15 patients undergoing laparoscopy or hysterectomy for endometriosis. Results: Seventy-eight candidate genes were identified from the subtractive cDNA libraries. Seventy-six of these genes were investigated in approximately 8000 real-time PCR for their differential expression in 30 paired tissue biopsies from 15 patients affected by endometriosis. Cluster analysis on gene expression revealed highly consistent profiles in two groups of genes, despite the clinical heterogeneity of the 15 cases. Thirty-four genes specific to early disease point to their potential roles in establishment and evolution of endometriosis. Most interestingly, 14 genes were consistently dysregulated in the paired samples from the majority of the patients. Of these, there were two uncharacterized transcripts and two novel genes, and 10 were matched to known genes: IGFBP5, PIM2, RPL41, PSAP, FBLN1, SIPL, DLX5, HSD11B2, SET, and RHOE. Conclusions: Dysregulation of 14 genes was found to be overtly associated with endometriosis. Some of these genes, known to participate in estrogen activities and antiapoptosis, may play a role in the pathogenesis of endometriosis and may represent potential diagnostic markers or therapeutic targets for endometriosis.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3