Protein Kinase C-ζ Phosphorylates Insulin Receptor Substrate-1, -3, and -4 But Not -2: Isoform Specific Determinants of Specificity in Insulin Signaling

Author:

Lee Sihoon1,Lynn Edward G.1,Kim Jeong-a1,Quon Michael J.1

Affiliation:

1. Diabetes Unit, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, Maryland 20892

Abstract

Protein kinase C-ζ, a downstream effector of phosphatidylinositol 3-kinase (PI3K), phosphorylates insulin receptor substrate (IRS)-1 on serine residues impairing activation of PI3K in response to insulin. Because IRS-1 is upstream from PI3K, this represents a negative feedback mechanism that may contribute to signal specificity in insulin action. To determine whether similar feedback pathways exist for other IRS isoforms, we evaluated IRS-2, -3, and -4 as substrates for PKC-ζ. In an in vitro kinase assay, purified recombinant PKC-ζ phosphorylated IRS-1, -3 and -4 but not IRS-2. Similar results were obtained with an immune-complex kinase assay demonstrating that wild-type, but not kinase-deficient mutant PKC-ζ, phosphorylated IRS-1, -3, and -4 but not IRS-2. We evaluated functional consequences of serine phosphorylation of IRS isoforms by PKC-ζ in NIH-3T3IR cells cotransfected with epitope-tagged IRS proteins and either PKC-ζ or empty vector control. Insulin-stimulated IRS tyrosine phosphorylation was impaired by overepxression of PKC-ζ for IRS-1, -3, and -4 but not IRS-2. Significant insulin-stimulated increases in PI3K activity was coimmunoprecipitated with all IRS isoforms. In cells overexpressing PKC-ζ there was marked inhibition of insulin-stimulated PI3K activity associated with IRS-1, -3 and -4 but not IRS-2. That is, PI3K activity associated with IRS-2 in response to insulin was similar in control cells and cells overexpressing PKC-ζ. We conclude that IRS-3 and -4 are novel substrates for PKC-ζ that may participate in a negative feedback pathway for insulin signaling similar to IRS-1. The inability of PKC-ζ to phosphorylate IRS-2 may help determine specific functional roles for IRS-2.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3