Discovery of a Cholecystokinin-Gastrin-Like Signaling System in Nematodes

Author:

Janssen Tom1,Meelkop Ellen1,Lindemans Marleen1,Verstraelen Karen1,Husson Steven J.1,Temmerman Liesbet1,Nachman Ronald J.2,Schoofs Liliane1

Affiliation:

1. Functional Genomics and Proteomics Unit (T.J., E.M., M.L., K.V., S.J.H., L.T., L.S.), Department of Biology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

2. Areawide Pest Management Research (R.J.N.), Southern Plains Agricultural Research Center, United States Department of Agriculture, College Station, Texas 77845

Abstract

Members of the cholecystokinin (CCK)/gastrin family of peptides, including the arthropod sulfakinins, and their cognate receptors, play an important role in the regulation of feeding behavior and energy homeostasis. Despite many efforts after the discovery of CCK/gastrin immunoreactivity in nematodes 23 yr ago, the identity of these nematode CCK/gastrin-related peptides has remained a mystery ever since. The Caenorhabditis elegans genome contains two genes with high identity to the mammalian CCK receptors and their invertebrate counterparts, the sulfakinin receptors. By using the potential C. elegans CCK receptors as a fishing hook, we have isolated and identified two CCK-like neuropeptides encoded by neuropeptide-like protein-12 (nlp-12) as the endogenous ligands of these receptors. The neuropeptide-like protein-12 peptides have a very limited neuronal expression pattern, seem to occur in vivo in the unsulfated form, and react specifically with a human CCK-8 antibody. Both receptors and ligands share a high degree of structural similarity with their vertebrate and arthropod counterparts, and also display similar biological activities with respect to digestive enzyme secretion and fat storage. Our data indicate that the gastrin-CCK signaling system was already well established before the divergence of protostomes and deuterostomes.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference106 articles.

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3