Affiliation:
1. Department of Oral Physiology and Institute of Oral Bioscience (S.-K.H.), School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea
2. Centre for Neuroendocrinology and Department of Physiology (S.-K.H., A.E.H.), University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
Abstract
Norepinephrine (NE) is considered to exert an important modulatory influence upon the activity of GnRH neurons. In the present study, we used a transgenic GnRH-green fluorescent protein mouse model to examine the effects of NE on the electrical excitability of GnRH neurons in male and female mice. Gramicidin-perforated patch recordings demonstrated that NE (10–100 μm) exerted a robust membrane hyperpolarization, with associated suppression of firing, in more than 85% of male prepubertal and adult GnRH neurons (n = 25). The same hyperpolarizing action was observed in female GnRH neurons from diestrous (91%, n = 11), proestrous (50%, n = 14), estrous (77%, n = 13), and ovariectomized (82%, n = 11) mice. A subpopulation (<10%) of silent GnRH neurons in all groups responded to NE with hyperpolarization followed by the initiation of firing upon NE washout. The hyperpolarizing actions of NE were mimicked by α1-adrenergic (phenylephrine) and β-adrenergic (isoproterenol) receptor agonists, but α2 receptor activation (guanabenz) had no effect. Approximately 75% of the NE-evoked hyperpolarization was blocked by the α1 receptor antagonist prazosin, and 75% of GnRH neurons responded to both phenylephrine and isoproterenol. These findings indicate that NE acts through both α1- and β-adrenergic receptors located on the soma/dendrites of GnRH neurons to directly suppress their excitability throughout the estrous cycle and after ovariectomy. These data force a reanalysis of existing models explaining the effects of NE on gonadotropin secretion.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献