Evidence for Circadian Regulation of Activating Transcription Factor 5 But Not Tyrosine Hydroxylase by the Chromaffin Cell Clock

Author:

Lemos Dario R.12,Goodspeed Leela1,Tonelli Luciana3,Antoch Marina P.4,Ojeda Sergio R.1,Urbanski Henryk F.5

Affiliation:

1. Division of Neuroscience (D.R.L., L.G., S.R.O., H.F.U.), Oregon National Primate Research Center, Beaverton, Oregon 97006;

2. Department of Physiology (D.R.L.), Faculty of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina;

3. Vaccine and Gene Therapy Institute (L.T.), Oregon Health and Science University, Beaverton, Oregon 97006;

4. Department of Cancer Biology (M.P.A.), Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44109;

5. Departments of Physiology and Pharmacology and Behavioral Neuroscience (H.F.U.), Oregon Health and Science University, Portland, Oregon 97239

Abstract

In mammals, adrenal medulla chromaffin cells constitute a fundamental component of the sympathetic nervous system outflow, producing most of the circulating adrenaline. We recently found that the rhesus monkey adrenal gland expresses several genes in a 24-h rhythmic pattern, including TH (the rate-limiting enzyme in catecholamine synthesis) and Atf5 (a transcription factor involved in apoptosis and neural cell differentiation) together with the core-clock genes. To examine whether these core-clock genes play a role in adrenal circadian function, we exposed rat pheochromocytoma PC12 cells to a serum shock and found that it triggered rhythmic oscillation of the clock genes rBmal1, rPer1, rRev-erbα, and rCry1 and induced the circadian expression of Atf5 but not TH. Furthermore, we found that the CLOCK/brain and muscle Arnt-like protein-1 (BMAL1) heterodimer could regulate Atf5 expression by binding to an E-box motif and repressing activity of its promoter. The physiological relevance of this interaction was evident in Bmal1 −/− mice, in which blunted circadian rhythm of Atf5 mRNA was observed in the liver, together with significantly higher expression levels in both liver and adrenal glands. Although we found no compelling evidence for rhythmic expression of TH in chromaffin cells being regulated by an intrinsic molecular clock mechanism, the Atf5 results raise the possibility that other aspects of chromaffin cell physiology, such as cell survival and cell differentiation, may well be intrinsically regulated.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3